1. Let F_{n} denote the n-th Fibonacci number. Prove that 3^{2023} divides

$$
3^{2} \cdot F_{4}+3^{3} \cdot F_{6}+3^{4} \cdot F_{8}+\cdots+3^{2023} F_{4046}
$$

[ICMC Nov 2023/1]
2. Prove that there exist distinct positive integers $a_{1}, a_{2}, \ldots, a_{2024}$ such that, for each $i \in$ $\{1,2, \ldots, 2024\}$,

$$
a_{i} \mid a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{2024}+k,
$$

where (a) $k=1$ and (b) $k=2024$.
[ICMC Feb 2024/1]
3. Fredy starts at the origin of the Euclidean plane. Each minute, Fredy may jump a positive integer distance to another lattice point, provided the jump is not parallel to either axis. Can Fredy reach any given lattice point in 2023 jumps or less?
[ICMC Nov 2023/2]
4. Let $n \geq 3$ be a positive integer. A circular necklace is called fun if it has n black beads and n white beads. A move consists of cutting out a segment of consecutive beads and reattaching it in reverse. Prove that it is possible to change any fun necklace into any other fun necklace using at most $(n-1)$ moves. (Necklaces related by rotations or reflections are considered to be the same.)
[ICMC Feb 2024/2]
5. There are 105 users on the social media platform Mathsenger, every pair of which has a direct messaging channel. Prove that each messaging channel may be assigned one of 100 encryption keys, such that no 4 users have the 6 pairwise channels between them all being assigned the same encryption key.
[ICMC Nov 2023/3]
6. Let $\left(t_{n}\right)_{n \geq 1}$ be the sequence defined by $t_{1}=1, t_{2 k}=-t_{k}$ and $t_{2 k+1}=t_{k+1}$ for all $k \geq 1$. Consider the series

$$
\sum_{n=1}^{\infty} \frac{t_{n}}{n^{1 / 2024}}
$$

Prove that this series converges to a positive real number.
7. Points A, B, C, and D lie on the surface of a sphere with diameter 1. Determine the maximum possible volume of tetrahedron $A B C D$.
[ICMC Nov 2023/4]
8. (a) Is there a non-linear integer-coefficient polynomial $P(x)$ and an integer N such that all integers greater than N may be written as the greatest common divisor of $P(a)$ and $P(b)$ for positive integers $a>b$?
(b) Is there a non-linear integer-coefficient polynomial $Q(x)$ and an integer M such that all integers greater than M may be written as $Q(a)-Q(b)$ for positive integers $a>b$?
[ICMC Nov 2023/5]
9. Is it possible to dissect an equilateral triangle into three congruent polygonal pieces (not necessarily convex), one of which contains the triangle's centre in its interior? (The interior of a polygon is the polygon without its boundary.)
[ICMC Feb 2024/5]
10. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a bijection of the positive integers. Prove that at least one of the following limits is true:

$$
\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{1}{n+f(n)}=\infty ; \quad \lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left(\frac{1}{n}-\frac{1}{f(n)}\right)=\infty .
$$

[ICMC Nov 2023/6]
11. A town has n residents, and they are members of some clubs (residents can be members of more than one club). No matter how we choose some (but at least one) clubs, there is a resident of the town who is the member of an odd number of the chosen clubs. Prove that the number of clubs is at most n.
[KöMaL/A842]
12. Let N be the set of those positive integers n for which $n \mid k^{k}-1$ implies $n \mid k-1$ for every positive integer k. Prove that if $n_{1}, n_{2} \in N$, then their greatest common divisor is also in N.
[KöMaL/A843]
13. For real number r let $f(r)$ denote the integer that is the closest to r (if the fractional part of r is $1 / 2$, let $f(r)$ be $r-1 / 2)$. Let $a>b>c$ rational numbers such that for all integers n the following is true: $f(n a)+f(n b)+f(n c)=n$. Determine the possible values of a, b and c.

