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1. Let A1, . . . , Ar be distinct subsets of nu] such that |Ai| is odd for all i and |Ai ∩Aj| is even
for all i ̸= j. Find the largest possible value of r.

2. The students of a school go out for ice cream in groups of at least two. After k > 1 groups

have gone out, each pair of students has gone out together exactly once. Prove that the number

of students in the school is at most k. (St. Petersburg)

3. Let A1, . . . , Am be distinct subsets of {1, 2, . . . , n} and k < n a positive integer such that

|Ai ∩ Aj| = λ for all i ̸= j. Prove that m ≤ n. (Fisher’s Inequality)

4. In a party with 2n people, each person has an even number of friends. Prove that there are

two people who have an even number of friends in common.

5. Let n be an even positive integer and let S1, . . . , Sn be subsets of even size of {1, 2, . . . , n}.
Prove that there exist i ̸= j such that |Si ∩ Sj| is even.

6. Let n be a positive integer. Given are 2n+1 real numbers with the property that, whenever

one of them is removed, the remaining 2n can be divided into two sets of n elements each

having the same sum of elements. Prove that all the numbers are equal. (Classic)

7. Consider a 6× 6 board. Each square of the board is painted black or white. It is allowed to

choose any t× t square, 2 ≤ t ≤ 6, and invert all the colors of the square. You can do this as

many times as you want. Is it always possible to make the entire board black? (Belarus)

8. Let A1, A2, . . . , An+1 be non-empty subsets of {1, 2, . . . , n}. Prove that there exist disjoint

subsets I, J ⊂ [n+ 1] such that ⋃
i∈I

Ai =
⋃
j∈J

Aj.

(China West 2002)

9. In a competition with n questions taken by m competitors, each question awards a distinct

positive amount of points. After the tests were evaluated, it was noticed that it was possible to

choose the scoring for each question in such a way that any ranking of the participants could

be achieved. What is the largest possible value of m? (Russia 2001)



10. Let G be a finite simple graph. There is a lamp at each vertex, and initially, all are turned

off. At each step, we can choose a vertex and change the state of the lamps of that vertex and

its neighbors. Prove that it is possible to turn all the lamps on simultaneously. (Germany

TST 2004)

11. At a mathematical convention, some pairs of mathematicians are friends. At dinner, each

participant sits in one of two rooms. Each mathematician insists on having an even number of

friends in the same room. Prove that the number of ways to separate the mathematicians into

two rooms is a power of 2. (USAMO 2008)

12. Let A be a collection of vectors of length n over Z/3Z with the property that for any two

distinct vectors a, b ∈ A, there exists some coordinate i such that bi ≡ ai + 1 (mod 3). Prove

that |A| ≤ 2n. (Iran 2006, Sperner Capacity of the Cyclic Triangle)

Hint 1. To find the largest
possible value, show an exam-
ple that works and prove that
it is impossible for a larger
one. Define the indicator vec-
tor vi ∈ Fn

2 . Prove that {vi} is
linearly independent.

Hint 2. Define the k × n in-
cidence matrix A. Show that
ATA is invertible.

Hint 3. Define the n × r ma-
trix A of column indicator vec-
tors. Calculate ATA. Show
that ATA is invertible.

Hint 4. Proof by contradic-
tion. Define the 2n × 2n ad-
jacency matrix A. Calculate
(AA)1 = A(A1) in two ways.

Hint 5. Proof by contradic-
tion. Define the n × n matrix
A of column indicator vectors.

Show that AT x = 0 has a non-
trivial solution, hence A is not
invertible. Show that ATA is
invertible.

Hint 6. Model the problem in
F36
2 . Show that the dimension

of the generated space is ≤ 35.

Hint 7 (1st solution). Con-
struct an appropriate matrix
M with zeros on the diagonal
and entries ±1. Show that the
determinant of this matrix is
not 0. To do that, show the
determinant is an odd integer.
Since the matrix is invertible,
the solution is unique.

Hint 7 (2nd solution). Solve
for positive integers. Solve for
integers. Solve for rationals.
Solve for reals, using the basis
of R over Q.

Hint 8. Find the linear com-
bination

∑
λivi = 0 ∈ Rn.

Define I = {i : λi > 0} and
J = {i : λi < 0}.

Hint 9. Find the linear com-
bination

∑
λivi = 0 ∈ Rn.

Define I = {i : λi > 0} and
J = {i : λi < 0}. Show that it
is impossible for all from I to
rank above all from J .

Hint 10. Define the adjacency
matrix A, with entries in F2

and 1 on the diagonal. Prove
that, since A is symmetric,
ImA = (KerA)⊥. Prove that
1 ∈ (KerA)⊥. Therefore, 1 ∈
ImA.

Hint 11. Define the adjacency
matrix A, with entries in F2

and 1 on the diagonal. De-
fine d as the degree vector of

the vertices. Note that a vec-
tor v ∈ Fn

2 is a solution if and
only if (A + diag d)v = d. Let
B = A+diag d. Show that d ∈
ImB = (KerB)⊥. The num-
ber of solutions will be non-
zero and therefore a power of 2,
due to the corresponding field
F2.

Solution 12. For an element
a = (a1, . . . , an) ∈ A, con-
sider the linear map fa :
Fn
3 → F3 given by fa(x) =∏n
i=1 (ai + 1− xi). Note that

we have fa(a) = 1 and fa(b) =
0 for any elements a ̸= b in
A. Just as in the first prob-
lem, this means that the lin-
ear maps {fa : a ∈ A} are
linearly independent. But all
of them are linear combina-
tions of monomials

∏
i∈S xi for

S ⊆ [n]. Since there are 2n

such monomials, we must have
|A| ≤ 2n.


