1. Factor $a^{3}+b^{3}+c^{3}-3 a b c$.
[Zeitz, p. 71]
2. How many of the subsets of the set $\{1,2, \ldots, 30\}$ have the property that the sum of their elements is greater than 232 ?
3. Given a point (a, b) with $0<b<a$, determine the minimum perimeter of a triangle with one vertex at (a, b), one on the x-axis, and one on the line $y=x$. You may assume that a triangle of minimum perimeter exists.
[Zeitz, p. 71]
4. Compute $\int_{0}^{\pi / 2}(\cos x)^{2} \mathrm{~d} x$.
[Zeitz, p. 65]
5. Four bugs are situated at each vertex of a unit square. Suddenly, each bug begins to chase its counterclockwise neighbor. If the bugs travel at 1 unit per minute, how long will it take for the four bugs to crash into one another?
[Zeitz, p. 65]
6. Consider the following two-player game. Each player takes turns placing a 2×1 domino on a 10×10 chessboard. The dominoes must be placed so that they do not overlap or hang off the edge of the board. The player who cannot place a domino loses. Who has the winning strategy?
7. A polynomial in several variables is called symmetric if it is unchanged when the variables are permuted. For example,

$$
f(x, y, z):=x^{2}+y^{2}+z^{2}+x y z
$$

is symmetric, since $f(x, y, z)=f(x, z, y)=f(y, x, z)=f(y, z, x)=f(z, x, y)=f(z, y, x)$.
Given three variables x, y, z, we define the elementary symmetric functions

$$
s_{1}=x+y+z, \quad s_{2}=x y+y z+z x, \quad s_{3}=x y z
$$

Elementary symmetric functions can be defined for any number of variables. For example, for four variables x, y, z, w, they are

$$
\begin{aligned}
& s_{1}=x+y+z+w, \\
& s_{2}=x y+x z+x w+y z+y w+z w, \\
& s_{3}=x y z+x y w+x z w+y z w, \\
& s_{4}=x y z w .
\end{aligned}
$$

(a) Verify that

$$
\begin{aligned}
x^{2}+y^{2}+z^{2} & =(x+y+z)^{2}-2(x y+y z+z x) \\
& =s_{1}^{2}-2 s_{2}
\end{aligned}
$$

where the s_{i} are the elementary symmetric functions in three variables.
(b) Likewise, express $x^{3}+y^{3}+z^{3}$ as a polynomial in the elementary symmetric functions.
(c) Do the same for $(x+y)(x+z)(y+z)$.
(d) Do the same for $x y^{4}+y z^{4}+z x^{4}+x z^{4}+y x^{4}+z y^{4}$.
(e) Can any symmetric polynomial in three variables be expressed as a polynomial in the elementary symmetric functions?
(f) Can any polynomial (not necessarily symmetric) in three variables be expressed as a polynomial in the elementary symmetric functions?
(g) Generalize to more variables. If you are confused, look at the two-variable case.
[Zeitz, p. 72]
8. A billiard ball (of infinitesimal diameter) strikes ray $\overrightarrow{B C}$ at point C, with angle of incidence α as shown. The billiard ball continues its path, bouncing off line segments $\overline{A B}$ and $\overline{B C}$ according to the rule "angle of incidence equals angle of reflection." If $A B=B C$, determine the number of times the ball will bounce off the two line
 segments (including the first bounce, at C). Your answer will be a function of α and β.
[Zeitz, p. 72]
9. Evaluate

$$
\int_{0}^{\pi / 2} \frac{d x}{1+(\tan x)^{\sqrt{2}}}
$$

[Zeitz, p. 73]
10. (a) Let K, L, M, N designate the centers of the squares erected on the four sides (outside) of a rhombus. Prove that the polygon $K L M N$ is a square.
(b) Sharpen the problem above by showing that the conclusion still holds if the rhombus is merely an arbitrary parallelogram.
[Zeitz, p. 73]

References

[Zeitz] Paul Zeitz. The Art and Craft of Problem Solving. Wiley, 2006.

