A1. For a positive integer $n$, let $f_{n}(x)=\cos (x) \cos (2 x) \cos (3 x) \cdots \cos (n x)$. Find the smallest $n$ such that $\left|f_{n}^{\prime \prime}(0)\right|>2023$.

B1. Consider an $m$-by- $n$ grid of unit squares, indexed by $(i, j)$ with $1 \leq i \leq m$ and $1 \leq j \leq n$. There are $(m-1)(n-1)$ coins, which are initially placed in the squares $(i, j)$ with $1 \leq i \leq m-1$ and $1 \leq j \leq n-1$. If a coin occupies the square $(i, j)$ with $i \leq m-1$ and $j \leq n-1$ and the squares $(i+1, j),(i, j+1)$, and $(i+1, j+1)$ are unoccupied, then a legal move is to slide the coin from $(i, j)$ to $(i+1, j+1)$. How many distinct configurations of coins can be reached starting from the initial configuration by a (possibly empty) sequence of legal moves?

A2. Let $n$ be an even positive integer. Let $p$ be a monic, real polynomial of degree $2 n$; that is to say, $p(x)=x^{2 n}+a_{2 n-1} x^{2 n-1}+\cdots+a_{1} x+a_{0}$ for some real coefficients $a_{0}, \ldots, a_{2 n-1}$. Suppose that $p(1 / k)=k^{2}$ for all integers $k$ such that $1 \leq|k| \leq n$. Find all other real numbers $x$ for which $p(1 / x)=x^{2}$.

B2. For each positive integer $n$, let $k(n)$ be the number of ones in the binary representation of $2023 \cdot n$. What is the minimum value of $k(n)$ ?

A3. Determine the smallest positive real number $r$ such that there exist differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ satisfying
(a) $f(0)>0$,
(b) $g(0)=0$,
(c) $\left|f^{\prime}(x)\right| \leq|g(x)|$ for all $x$,
(d) $\left|g^{\prime}(x)\right| \leq|f(x)|$ for all $x$, and
(e) $f(r)=0$.

B3. A sequence $y_{1}, y_{2}, \ldots, y_{k}$ of real numbers is called zigzag if $k=1$, or if $y_{2}-y_{1}, y_{3}-$ $y_{2}, \ldots, y_{k}-y_{k-1}$ are nonzero and alternate in sign. Let $X_{1}, X_{2}, \ldots, X_{n}$ be chosen independently from the uniform distribution on $[0,1]$. Let $a\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be the largest value of $k$ for which there exists an increasing sequence of integers $i_{1}, i_{2}, \ldots, i_{k}$ such that $X_{i_{1}}, X_{i_{2}}, \ldots, X_{i_{k}}$ is zigzag. Find the expected value of $a\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ for $n \geq 2$.

A4. Let $v_{1}, \ldots, v_{12}$ be unit vectors in $\mathbb{R}^{3}$ from the origin to the vertices of a regular icosahedron. Show that for every vector $v \in \mathbb{R}^{3}$ and every $\varepsilon>0$, there exist integers $a_{1}, \ldots, a_{12}$ such that $\left\|a_{1} v_{1}+\cdots+a_{12} v_{12}-v\right\|<\varepsilon$.

B4. For a nonnegative integer $n$ and a strictly increasing sequence of real numbers $t_{0}, t_{1}, \ldots, t_{n}$, let $f(t)$ be the corresponding real-valued function defined for $t \geq t_{0}$ by the following properties:
(a) $f(t)$ is continuous for $t \geq t_{0}$, and is twice differentiable for all $t>t_{0}$ other than $t_{1}, \ldots, t_{n}$;
(b) $f\left(t_{0}\right)=1 / 2$;
(c) $\lim _{t \rightarrow t_{k}^{+}} f^{\prime}(t)=0$ for $0 \leq k \leq n$;
(d) For $0 \leq k \leq n-1$, we have $f^{\prime \prime}(t)=k+1$ when $t_{k}<t<t_{k+1}$, and $f^{\prime \prime}(t)=n+1$ when $t>t_{n}$.

Considering all choices of $n$ and $t_{0}, t_{1}, \ldots, t_{n}$ such that $t_{k} \geq t_{k-1}+1$ for $1 \leq k \leq n$, what is the least possible value of $T$ for which $f\left(t_{0}+T\right)=2023$ ?

A5. For a nonnegative integer $k$, let $f(k)$ be the number of ones in the base 3 representation of $k$. Find all complex numbers $z$ such that

$$
\sum_{k=0}^{3^{1010}-1}(-2)^{f(k)}(z+k)^{2023}=0
$$

B5. Determine which positive integers $n$ have the following property: For all integers $m$ that are relatively prime to $n$, there exists a permutation $\pi:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ such that $\pi(\pi(k)) \equiv m k(\bmod n)$ for all $k \in\{1,2, \ldots, n\}$.

A6. Alice and Bob play a game in which they take turns choosing integers from 1 to $n$. Before any integers are chosen, Bob selects a goal of "odd" or "even". On the first turn, Alice chooses one of the $n$ integers. On the second turn, Bob chooses one of the remaining integers. They continue alternately choosing one of the integers that has not yet been chosen, until the $n$th turn, which is forced and ends the game. Bob wins if the parity of $\{k$ : the number $k$ was chosen on the $k$ th turn $\}$ matches his goal. For which values of $n$ does Bob have a winning strategy?

B6. Let $n$ be a positive integer. For $i$ and $j$ in $\{1,2, \ldots, n\}$, let $s(i, j)$ be the number of pairs $(a, b)$ of nonnegative integers satisfying $a i+b j=n$. Let $S$ be the $n$-by- $n$ matrix whose $(i, j)$ entry is $s(i, j)$. For example, when $n=5$, we have $S=\left[\begin{array}{lllll}6 & 3 & 2 & 2 & 2 \\ 3 & 0 & 1 & 0 & 1 \\ 2 & 1 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 & 1 \\ 2 & 1 & 1 & 1 & 2\end{array}\right]$. Compute the determinant of $S$.

Welcome to the Problem Solving Group, a.k.a. PSG! All materials will be posted to www.guilhermezeus.com/psg. Scan the QR code to join our mailing list.


