Haverford Problem Solving Group

November 16, 2023
Problems from the Putnam Competition

Q0. Are you registered for the Putnam? If not, ask any PSG co-head for help.
Q1 (Putnam 2017/A1). Let S be the smallest set of positive integers such that
(a) 2 is in S,
(b) n is in S whenever n^{2} is in S, and
(c) $(n+5)^{2}$ is in S whenever n is in S.

Which positive integers are not in S ?

Q2 (Putnam 2015/A2). Let $a_{0}=1, a_{1}=2$, and $a_{n}=4 a_{n-1}-a_{n-2}$ for $n \geq 2$. Find an odd prime factor of a_{2015}.

Q3 (Putnam 2014/A1). Prove that every nonzero coefficient of the Taylor series of ($1-x+x^{2}$) e^{x} about $x=0$ is a rational number whose numerator (in lowest terms) is either 1 or a prime number.

Q4 (Putnam 2016/B1). Let $x_{0}, x_{1}, x_{2}, \ldots$ be the sequence such that $x_{0}=1$ and for $n \geq 0$, $x_{n+1}=\ln \left(e^{x_{n}}-x_{n}\right)$. Show that the infinite series $x_{0}+x_{1}+x_{2}+\cdots$ converges and find its sum.

Q5 (Putnam 2015/B1). Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a three times differentiable function such that f has at least five distinct real roots. Prove that $f+6 f^{\prime}+12 f^{\prime \prime}+8 f^{\prime \prime \prime}$ has at least two distinct real roots.

Q6 (Putnam 2013/A1). Recall that a regular icosahedron is a convex polyhedron having 12 vertices and 20 faces; the faces are congruent equilateral triangles. On each face of a regular icosahedron is written a nonnegative integer such that the sum of all 20 integers is 39 . Show that there are two faces that share a vertex and have the same integer written on them.

Q7 (Putnam 2015/A1). Let A and B be points on the same branch of the hyperbola $x y=1$. Suppose that P is a point lying between A and B on this hyperbola, such that the area of the triangle $A P B$ is as large as possible. Show that the region bounded by the hyperbola and the chord $A P$ has the same area as the region bounded by the hyperbola and the chord $P B$.

Q8 (Putnam 2014/A2). Let A be the $n \times n$ matrix whose entry in the i-th row and j-th column is $1 / \min (i, j)$ for $1 \leq i, j \leq n$. Compute $\operatorname{det}(A)$.

For more problems, turn the page.

Q9 (Putnam 2013/B1). For positive integers n, let the numbers $c(n)$ be determined by the rules $c(1)=1, c(2 n)=c(n)$, and $c(2 n+1)=(-1)^{n} c(n)$. Find the value of

$$
\sum_{n=1}^{2013} c(n) c(n+2)
$$

Q10 (Putnam 2013/A2). Let S be the set of all positive integers that are not perfect squares. For n in S, consider choices of integers $a_{1}, a_{2}, \ldots, a_{r}$ such that $n<a_{1}<a_{2}<\cdots<a_{r}$ and $n \cdot a_{1} \cdot a_{2} \cdots a_{r}$ is a perfect square, and let $f(n)$ be the minumum of a_{r} over all such choices. For example, $2 \cdot 3 \cdot 6$ is a perfect square, while $2 \cdot 3,2 \cdot 4,2 \cdot 5,2 \cdot 3 \cdot 4,2 \cdot 3 \cdot 5,2 \cdot 4 \cdot 5$, and $2 \cdot 3 \cdot 4 \cdot 5$ are not, and so $f(2)=6$. Show that the function f from S to the integers is one-to-one.

Q11 (Putnam 2014/B1). A base 10 over-expansion of a positive integer N is an expression of the form

$$
N=d_{k} 10^{k}+d_{k-1} 10^{k-1}+\cdots+d_{0} 10^{0}
$$

with $d_{k} \neq 0$ and $d_{i} \in\{0,1,2, \ldots, 10\}$ for all i. For instance, the integer $N=10$ has two base 10 over-expansions: $10=10 \cdot 10^{0}$ and the usual base 10 expansion $10=1 \cdot 10^{1}+0 \cdot 10^{0}$. Which positive integers have a unique base 10 over-expansion?

Q12 (Putnam 2014/B2). Suppose that f is a function on the interval [1,3] such that $-1 \leq$ $f(x) \leq 1$ for all x and $\int_{1}^{3} f(x) d x=0$. How large can $\int_{1}^{3} \frac{f(x)}{x} d x$ be?

Q13 (Putnam 2015/B2). Given a list of the positive integers $1,2,3,4, \ldots$, take the first three numbers $1,2,3$ and their sum 6 and cross all four numbers off the list. Repeat with the three smallest remaining numbers $4,5,7$ and their sum 16 . Continue in this way, crossing off the three smallest remaining numbers and their sum, and consider the sequence of sums produced: $6,16,27,36, \ldots$ Prove or disprove that there is some number in the sequence whose base 10 representation ends with 2015.

Q14 (Putnam 2016/A1). Find the smallest positive integer j such that for every polynomial $p(x)$ with integer coefficients and for every integer k, the integer

$$
p^{(j)}(k)=\left.\frac{d^{j}}{d x^{j}} p(x)\right|_{x=k}
$$

(the j-th derivative of $p(x)$ at k) is divisible by 2016 .

Q15 (Putnam 2016/A2). Given a positive integer n, let $M(n)$ be the largest integer m such that $\binom{m}{n-1}>\binom{m-1}{n}$. Evaluate $\lim _{n \rightarrow \infty} M(n) / n$.

