Question 0. Are you registered for the Putnam? If not, ask any PSG co-head for help.

K1. Compute the limit

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}\right)
$$

[Loh23]
K2. Determine $f^{\prime}(x)$, if $f(x)=\left[\int_{0}^{x^{2}} e^{-t^{2}} d t\right]^{2}$.
K3. Find all real functions f for which $\int_{0}^{x} f(t) d t=\frac{1}{2} x f(x)$.
K4. Determine

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n^{2}} \frac{n}{n^{2}+i^{2}}
$$

K5. Prove that

$$
\int_{0}^{1} \frac{x^{4}(1-x)^{4}}{1+x^{2}}=\frac{22}{7}-\pi
$$

K6. Let $x_{1}=\sqrt{5}$ and $x_{n+1}=x_{n}^{2}-2$. Compute

$$
\lim _{n \rightarrow \infty} \frac{x_{1} x_{2} x_{3} \cdots x_{n-1}}{x_{n}}
$$

[IMC 2010]
K7. Let C be the unit circle $x^{2}+y^{2}=1$. A point P is chosen randomly on the circumference C and another point Q is chosen randomly from the interior of C (these points are chosen independently and uniformly over their domains). Let R be the rectangle with sides parallel to the x and y-axes with diagonal $P Q$. What is the probability that no point of R lies outside of C ?

K8. Three infinitely long circular cylinders, each with unit radius, have their axes along the x, y and z axes. Determine the volume of the region common to all three cylinders. (Thus one needs the volume common to $\left\{y^{2}+z^{2} \leq 1\right\},\left\{z^{2}+x^{2} \leq 1\right\}$, and $\left\{x^{2}+y^{2} \leq 1\right\}$.) [Loh23]

For more problems, turn the page.

K9. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ has a continuous derivative and that $\int_{0}^{1} f(x) d x=0$. Prove that for every $\alpha \in(0,1)$,

$$
\left|\int_{0}^{\alpha} f(x) d x\right| \leq \frac{1}{8} \max _{0 \leq x \leq 1}\left|f^{\prime}(x)\right|
$$

K10. Find the volume of the region of points (x, y, z) such that

$$
\left(x^{2}+y^{2}+z^{2}+8\right)^{2} \leq 36\left(x^{2}+y^{2}\right) .
$$

K11. Let P be a convex polygon, let Q be the interior of P, and let $S=P \cup Q$. Let p be the perimeter of P and let A be its area. Given any point (x, y), let $d(x, y)$ be the distance from (x, y) to the nearest point of S. Find constants α, β, and γ such that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-d(x, y)} d x d y=\alpha+\beta p+\gamma A .
$$

K12. Let G_{n} be the geometric mean of $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$. Compute

$$
\lim _{n \rightarrow \infty} \sqrt[n]{G_{n}}
$$

K13. Let $f(x)=\int_{0}^{x} \sin \left(t^{2}-t+x\right) d t$. Compute $f^{\prime \prime}(x)+f(x)$, and deduce that $f^{(12)}(0)+$ $f^{(10)}(0)=0$. (Here, $f^{(10)}$ indicates the 10th derivative.)

K14. Evaluate

$$
\int_{1}^{4} \frac{x-2}{\left(x^{2}+4\right) \sqrt{x}} d x
$$

K15. Evaluate

$$
\int_{1}^{2} \frac{\ln x}{2-2 x+x^{2}} d x
$$

K16. Evaluate

$$
\int_{0}^{\infty} \frac{\arctan (\pi x)-\arctan (x)}{x} d x
$$

where $0 \leq \arctan (x)<\frac{\pi}{2}$ for $0 \leq x<\infty$.

Welcome to the Problem Solving Group, a.k.a. PSG! All materials will be posted to www.guilhermezeus.com/psg. Scan the QR code to join our mailing list.

References

[Loh23] Po-Shen Loh. Calculus. Carnegie Mellon University Putnam Seminar. 2023. url: https://www.math.cmu.edu/~ploh/docs/math/2023-295/04-calculus.pdf.

