R1. Prove that for any $n \geq 1$, a $2^{n} \times 2^{n}$ checkerboard with any 1×1 square removed can be tiled by L-shaped triominoes.

R2. How many sequences of 1 s and 3 s sum to 16 ? Examples of such sequences are $1,3,3,3,3,3$ and $1,3,1,3,1,3,1,3$.
[Loh23]

R3. A sequence is defined by $a_{0}=-1, a_{1}=0$, and

$$
\begin{equation*}
a_{n+1}=a_{n}^{2}-(n+1)^{2} a_{n-1}-1 \tag{Loh23}
\end{equation*}
$$

for all positive integers n. Find a_{100}.

R4. Let $F_{0}=0, F_{1}=1$ and $F_{n+1}=F_{n}+F_{n-1}$ for $n \geq 1$. Find a closed formula for the nth Fibonacci number. Use it to show that the ratio F_{n+1} / F_{n} of successive Fibonacci numbers approaches $\frac{1+\sqrt{5}}{2}$ (the golden ratio) as $n \rightarrow \infty$.

R5. How many ways are there to tile a $2 \times n$ rectangle using 1×2 and 2×2 tiles, if the 1×2 tiles come in three colours but the 2×2 tiles only come in one? The 1×2 tiles may be placed either horizontally or vertically.

R6. A type 1 sequence is a sequence with each term 0 or 1 which does not have $0,1,0$ as consecutive terms. A type 2 sequence is a sequence with each term 0 or 1 which does not have $0,0,1,1$ or $1,1,0,0$ as consecutive terms. Show that there are twice as many type 2 sequences of length $n+1$ as type 1 sequences of length n.
[Loh23]

R7. A computer is programmed to randomly generate a string of six symbols using only the letters A, B, C. What is the probability that the string will not contain three consecutive As?
[Loh22]
R8. Prove that the Fibonacci numbers satisfy $F_{n}^{2}+F_{n+1}^{2}=F_{2 n+1}$.
[Loh22]

R9. Let F_{n} be the Fibonacci sequence. Evaluate

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{1}{F_{n-1} F_{n+1}} \tag{Loh23}
\end{equation*}
$$

For more problems, turn the page.

R10. Let $x_{0}=1$, and for each $n \geq 0$, let $x_{n+1}=x_{n}+\frac{1}{x_{n}}$. Prove that $x_{n} \rightarrow \infty$.
[Loh22]
R11 (Zeckendorf's Theorem). Every positive integer can be uniquely represented as the sum of one or more distinct Fibonacci numbers, where no two are consecutive Fibonacci numbers.
[Loh23]
R12. For n a positive integer, define $f_{1}(n)=n$, and then for each i, let $f_{i+1}(n)=f_{i}(n)^{f_{i}(n)}$. Determine $f_{100}(75) \bmod 17$.
[Loh23]
R13. Let $a_{3}=\frac{2+3}{1+6}$, and for each $n \geq 4$, let

$$
\begin{equation*}
a_{n}=\frac{n+a_{n-1}}{1+n a_{n-1}} . \tag{Loh22}
\end{equation*}
$$

Find a_{1995}.
R14. Let n be a positive integer. A bit string of length n is a sequence of n numbers consisting of 0 's and 1 's. Let $f(n)$ denote the number of bit strings of length n in which every 0 is surrounded by 1 's. (Thus for $n=5,11101$ is allowed, but 10011 and 10110 are not allowed, and we have $f(3)=2, f(4)=3$.) Prove that $f(n)<1.7^{n}$ for all n.
[Loh22]
R15. Let x be a real number strictly between 0 and 1 . For each positive integer n, define $f_{n}(t)=t+\frac{t^{2}}{n}$, and let

$$
\begin{equation*}
a_{n}=f_{n}\left(f_{n}\left(\ldots f_{n}(x)\right) \ldots\right), \tag{Loh22}
\end{equation*}
$$

where f_{n} is iterated n times. Determine $\lim _{n \rightarrow \infty} a_{n}$.

References

[Loh22] Po-Shen Loh. Recursions. Carnegie Mellon University Putnam Seminar. 2022. UrL: https://www.math.cmu.edu/~ploh/docs/math/2022-295/08-recursions.pdf.
[Loh23] Po-Shen Loh. Recursions. Carnegie Mellon University Putnam Seminar. 2023. UrL: https://www.math.cmu.edu/~ploh/docs/math/2023-295/08-recursions.pdf.
[Tuf] Chris Tuffley. Recurrence relations. New Zealand Mathematical Olympiad Committee.

Welcome to the Problem Solving Group, a.k.a. PSG! All materials will be posted to www.guilhermezeus.com/psg. Scan the QR code to join our mailing list.

