Let $m \in \mathbb{Z}_{>0}$ be a positive integer, and let $a, b \in \mathbb{Z}$ be integers. We say that a is congruent to b modulo m, denoted by $a \equiv b(\bmod m)$, if m divides $a-b$. For example, $7 \equiv 2$ $(\bmod 5)$ because $5 \mid(7-2)$. Equivalently, $a \equiv b(\bmod m)$ if and only if a and b have the same remainder when divided by m.
Let $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then:
(i) $a+c \equiv b+d(\bmod m)$,
(iii) $a c \equiv b d(\bmod m)$.
(ii) $a-c \equiv b-d(\bmod m)$,
(iv) $a^{k} \equiv b^{k}(\bmod m)$ for all $k \in \mathbb{Z}$.

Although we cannot "divide", sometimes we can "cancel".
(i) If $\operatorname{gcd}(m, n)=1$, then $n a \equiv n b(\bmod m) \Longleftrightarrow a \equiv b(\bmod m)$.

N1. Compute the remainder of
(a) 4^{1234} when divided by 3 ,
(c) 2^{2002} when divided by 101 ,
(b) 20^{100} when divided by 17 ,
(d) $2^{70}+3^{70}$ when divided by 13 .

N2. When 4444^{4444} is written in decimal notation, the sum of its digits is A. Let B be the sum of the digits of A. Find the sum of the digits of B.

N3. Prove the properties (i) to (v) above.
$\mathbf{N} 4$. Show that, for any positive integer n, the number $n^{5}-n$ is divisible by 30 .
N5. Show that
(a) $2^{32}+1$ and $2^{4}+1$ are relatively prime, that is, $\operatorname{gcd}\left(2^{32}+1,2^{4}+1\right)=1$.
(b) $2^{15}-1$ and $2^{10}+1$ are relatively prime, that is, $\operatorname{gcd}\left(2^{15}-1,2^{10}+1\right)=1$.

N6. Find all non-negative integers x and y such that
(a) $2^{x}=3^{y}-1$,
(b) $2^{x}=3^{y}+1$,
(c) $2^{x}=3^{y}-7$.

N7. Let m, n be positive integers such that

$$
\frac{m}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots-\frac{1}{1318}+\frac{1}{1319}
$$

Show that m is divisible by 1979 .

N8. Let n be a positive integer. Prove that there are pairwise relatively prime integers k_{1}, \ldots, k_{n}, all strictly greater than 1 , such that $k_{0} k_{1} \ldots k_{n}-1$ is the product of two consecutive integers.

N9 (Fermat-Euler Theorem). Let n be a positive integer. Let a be an integer relatively prime to n. Let $\phi(n)$ be the number of positive integers k up to n that are relatively prime to n. Then,

$$
a^{\phi(n)} \equiv 1 \quad(\bmod n)
$$

N10. Let p be a prime. Prove that $(p-1)!\equiv-1(\bmod p)$.
N11. Let p be a prime. Prove that $x^{2} \equiv-1(\bmod p)$ has a solution if and only if $p=2$ or $p \equiv 1(\bmod 4)$.

N12. Define the set of sum of squares as $\mathcal{S}=\left\{a^{2}+b^{2}: a, b \in \mathbb{Z}\right\}$.
(a) Prove that if $m, n \in \mathcal{S}$, then $m n \in \mathcal{S}$.
(b) Let p be a prime number. Prove that $p \in \mathcal{S}$ if and only if $p=2$ or $p \equiv 1(\bmod 4)$.
(c) Let p be a prime number in \mathcal{S}. Prove that $m \in \mathcal{S}$ if and only if $p m \in \mathcal{S}$.
(d) Prove that $n \in \mathcal{S}$ if and only if every prime $p \equiv 3(\bmod 4)$ divides n an even number of times.

N13. Let m, n be positive integers such that $m^{2}+n^{2}$ is divisible by $m n+1$. Prove that $\left(m^{2}+n^{2}\right) /(m n+1)$ is a perfect square.

N14. Find all pairs of integers (a, b) such that $a b$ divides $a^{2}+b^{2}+1$.
N15. Let a, b be positive integers such that $4 a b-1$ divides $\left(4 a^{2}-1\right)^{2}$. Prove that $a=b$.

Welcome to the Problem Solving Group, a.k.a. PSG! All materials will be posted to www.guilhermezeus.com/psg. Scan the QR code to join our mailing list.

