Welcome to the Problem Solving Group, a.k.a. PSG! All materials will be posted to www. guilhermezeus.com/psg. Scan the QR code to join our mailing list.

P1. Let the roots of $x^{2}-17 x+13=0$ be r and s. What are the values of (a) $r^{2} s^{2}$, (b) $r^{2}+s^{2}$, (c) $r^{2} s+s^{2} r$, (d) $r^{3}+s^{3}$.

P2. Find all real roots of the polynomials
(a) $p(x)=x^{4}-2 x^{3}-2 x^{2}+3 x+2$,
(b) $q(x)=x^{4}-4 x^{3}+6 x^{2}-4 x+6$,
(c) $q(x)=x^{4}-4 x^{3}+7 x^{2}-2 x+1$.

P3. Let p, q be real numbers, and let a, b, c be distinct real numbers such that $a^{3}+p a+q=0$, $b^{3}+p b+q=0$, and $c^{3}+p c+q=0$. Determine $a+b+c$.

P4. Factor $a^{3}+b^{3}+c^{3}-3 a b c$.

P5. Let a, b, c, d be distinct real numbers such that a and b are the roots of the equation $x^{2}-3 c x-8 d=0$, and c and d are the roots of the equation $x^{2}-3 a x-8 b=0$. Determine the $\operatorname{sum} a+b+c+d$.

P6. Let a, b, c be real numbers such that the equations $x^{2}+a x+1=0$ and $x^{2}+b x+c=0$ have exactly one common root, and such that the equations $x^{2}+x+a=0$ and $x^{2}+c x+b=0$ also have exactly one common root. Determine the sum $a+b+c$.
[Shi18]
P7. Let a, b, r, s be real numbers such that the roots of the equation $x^{2}-a x+b=0$ are $\frac{1}{r}$ and $\frac{1}{s}$, and the roots of $x^{2}-r x+s=0$ are a and b. Given that $a>0$, determine its value. [Shi18]

P8. Let a, b, c be real numbers. Suppose that $x^{3}+a x^{2}+b x+c=0$ has three real roots. Prove that $3 b \leq a^{2}$.

P9. Let $P(x)=x^{2}+b x+c$ be a quadratic polynomial such that $P(x)$ and $P(P(P(x)))$ have a common root. Prove that $P(0) \cdot P(1)=0$.

For more problems, turn the page.

P10. Let p and q be integers. Suppose $x^{2}+p x+q$ is positive for all integers x. Show that $x^{2}+p x+q=0$ does not have a real solution.
[Shi18]
P11. Let $f(x)=x^{2}+2007 x+1$. Show that $\underbrace{f(f(\cdots(f}_{n \text { times }}(x)) \cdots))=0$ has at least one real root,
for any positive integer n.
[Shi18]
P12. Let $f(x)=x^{2}-2$. Show that the roots of the equation $\underbrace{f(f(\cdots(f}_{n \text { times }}(x)) \cdots))=x$ are real
and distinct, for any positive integer n.
P13. A quadratic polynomial $P(x)$ satisfies $-1 \leq P(x) \leq 1$ for $0 \leq x \leq 1$. Prove that $P\left(-\frac{1}{2}\right) \leq 7$.

P14. Let $f(x)=x^{2}+a x+b$. Suppose $f(f(x))=0$ has four distinct real roots, and that the sum of two of them is -1 . Prove that $b \leq-\frac{1}{4}$.
[Shi18]
P15. Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers with zero sum, and with sum of squares equals 1 . Prove that there exists two of them, x_{i} and x_{j}, such that $x_{i} x_{j} \leq-\frac{1}{n}$.
[Shi18]
P16. Let $P(x), Q(x), R(x)$, and $S(x)$ be polynomials such that

$$
P\left(x^{5}\right)+x Q\left(x^{5}\right)+x^{2} R\left(x^{5}\right)=\left(x^{4}+x^{3}+x^{2}+x+1\right) S(x) .
$$

Prove that $x-1$ is a factor of $P(x)$.
[Lee18, P5]
P17. Find all polynomials $f(x)$ with real coefficients such that $f(x) f\left(2 x^{2}\right)=f\left(2 x^{3}+x\right)$.
[Lee18, P7]
P18. Let $P(x)$ and $Q(x)$ be monic polynomials of degree 10 with real coefficients. Suppose $P(x)=Q(x)$ has no real roots. Prove that $P(x+1)=Q(x-1)$ has a real root.
[Shi18]
P19. Is there an infinite sequence $a_{0}, a_{1}, a_{2}, \ldots$ of nonzero real numbers such that, for all $n \in \mathbb{Z}_{>0}$, the polynomial $p_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ has exactly n distinct real roots? [Lee18, P20]

P20. Find all polynomials $f(x) \in \mathbb{R}[x]$ such that $f\left(x^{2}\right)=f(x)^{2}$.
[Lee18, P25]

References

[Lee18] Hojoo Lee. Functions, Polynomials, and Sequences. 2018. URL: https://cosmogeome ter.wordpress.com/problems/.
[Shi18] Carlos Shine. Funções Quadráticas e Polinômios. 21st Brazilian Olympic Week, in Portuguese. 2018. URL: https://www.obm.org.br/content/uploads/2018/01/ Carlos_Shine-_quadratica_2017.pdf.

