

G1. One of the cross section in a rectangular box is a regular hexagon. Prove that the box is a cube.
[Eng98, p. 318]

G2. Can two triangles have two equal dised and three equal angles, and still be noncongruent? If yes, then give conditions.
[Eng98, p. 318]

G3. Let P be a point inside a continuous closed curve in the plane which does not intersect itself. Show that there are two points on the curve whose midpoint is P. [Sch99] [Loh22]

G4. What is the maximum area of a quadrilateral with sides 1, 4, 7, 8? [Eng98, p. 319]
G5. Any four of five circles have a common point. Prove that all five circles have a common point.
[Eng98, p. 321]

G6. Given any bounded plane region, prove that there are three concurrent lines that cut it into six pieces of equal area.

G7. Using only an unmarked ruler, solve the following items. (a) Given two paralel segments, construct their midpoints. (b) Given a segment s, its midpoint, and a point $P \notin s$, construct a line r parallel to s through P. (c) Given a paralellogram, draw a parallel through its center to a side.
[Eng98, pp. 319-320]

For more problems, turn the page.

G8. Let convex quadrilateral $A B C D$ be given in a plane, and let X be a point not on the plane. Show that there are points $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime} on the lines $X A, X B, X C$, and $X D$, respectively, with the property that $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is a parallelogram.

G9. (a) Given a finite collection of closed squares of total area 3, prove that they can be arranged to cover the unit square. (b) Given a finite collection of closed squares of total area $\frac{1}{2}$, prove that they can be arranged to fit in the unit square (with no overlaps). [Loh22]

G10. Let $O A$ and $O B$ be two rays in the plane, and let P be a point between them. Which point X on the ray $O A$ has the property that if $X P$ is extended to meet the ray $O B$ at Y, then $X P \cdot P Y$ is minimized?

G11. Suppose that the sun is exactly overhead. How should I hold a rectangular box over a horizontal table so that its shadow has maximum area?
[Eng98, p. 321]

G12. Given a region whose boundary is a simple polygon of area a and perimeter p, prove that it contains a disc with radius larger than a / p.
[Loh22]
G13. Given a right triangle and a finite set of points inside it, prove that these points can be connected by a path of line segments, such that the sum of squares of segment lengths in this path is at most the square of the hypotenuse.
[Loh22]

G14. Let an ellipse have center O and foci A and B. For a point P on the ellipse, let d be the distance from O to the line of tangency to the ellipse at P. Show that $P A \cdot P B \cdot d^{2}$ is independent of the position of P.
[Loh22]

References

[Eng98] Arthur Engel. Problem-Solving Strategies. Problem Books in Mathematics. New York: Springer, 1998.
[Loh22] Po-Shen Loh. Geometry. Carnegie Mellon University Putnam Seminar. 2022. url: https://www.math.cmu.edu/~ploh/docs/math/2022-295/13-geometry.pdf.
[Sch99] John Scholes. Putnam 1977/B4 Solution. Nov. 30, 1999. URL: https://prase.cz/ kalva/putnam/psoln/psol7710.html.

