Combinatorial Models for Key and Atom Polynomials

Guilherme Zeus Dantas e Moura

Haverford College
May 7, 2024

The Ring of Polynomials

Combinatorial
Models for Key and Atom
Polynomials
Guilherme
Zeus Dantas e Moura
$\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\left\{\begin{array}{c}\text { polynomials } \\ \text { in the variables } x_{1}, x_{2}, \ldots, x_{n} \\ \text { with integer coefficients }\end{array}\right\}$.

Example: $3 x_{1}^{2}-2 x_{2}+5 x_{1} x_{2} \in \mathbb{Z}\left[x_{1}, x_{2}\right]$.

The Ring of Symmetric Polynomials

Combinatorial Models for Key and Atom Polynomials

Guilherme Zeus Dantas e Moura

A polynomial is symmetric if it remains the same after permuting its variables.

Example: $x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \in \mathrm{Sym}_{3}$.

Rings are Modules

Combinatorial Models for Key and Atom Polynomials

Guilherme

From any ring:
addition: $p+q$
multiplication: $p \cdot q$
...we can form a module by "forgetting" multiplication:
addition: $p+q \quad$ scaling: $n p, n \in \mathbb{Z}$
...which are like "vector spaces" but over a ring; for us, \mathbb{Z}.

Integer Basis

Combinatorial
Models for Key and Atom
Polynomials
Guilherme
Zeus Dantas e Moura

A subset B of a module M over \mathbb{Z} is a basis if for all $p \in M$, there exist unique finite linear combination:

$$
p=\sum_{b \in B} c_{b} \cdot b
$$

where $c_{b} \in \mathbb{Z}$.

Monomial Basis of the Polynomial Ring

Combinatorial Models for Key and Atom Polynomials

Guilherme Zeus Dantas e Moura

The set of all monomials forms a basis of $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$:

$$
\left\{x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}} \mid \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{Z}_{\geq 0}\right\}
$$

Example: $x_{1} x_{3}^{2}=x_{1}^{1} x_{2}^{0} x_{3}^{2}$ is a monomial in $\mathbb{Z}\left[x_{1}, x_{2}, x_{3}\right]$.

Each monomial $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$ is defined by the sequence of its exponents.

Compositions index Monomials

A composition of length n is a sequence of nonnegative integers

$$
\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}{ }^{n}
$$

Example: $(1,0,2)$ is a composition of length 3 .

Combinatorial Models for Key and Atom Polynomials

Guilherme Moura

Compositions index Monomials

A composition of length n is a sequence of nonnegative integers
Combinatorial Models for Key and Atom Polynomials

Guilherme Moura

$$
\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}{ }^{n}
$$

Example: $(1,0,2)$ is a composition of length 3 .

$$
x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}} .
$$

$$
x^{(1,0,2)}=x_{1} x_{3}^{2} .
$$

Compositions index Monomials

A composition of length n is a sequence of nonnegative integers
Combinatorial Models for Key and Atom Polynomials

Guilherme

$$
\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}{ }^{n}
$$

Example: $(1,0,2)$ is a composition of length 3 .
Notation:

$$
x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}} .
$$

$$
x^{(1,0,2)}=x_{1} x_{3}^{2}
$$

The set of all monomials forms a basis of $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$:

$$
\left\{x^{\alpha} \mid \alpha \text { is a composition of length } n\right\} .
$$

Symmetric Monomial Basis of Sym_{n}

A symmetric monomial is the sum of all monomials obtained by rearranging the exponents of a monomial.

Example 1: $x_{1}^{9} x_{2}^{7} x_{3}^{4}+x_{1}^{9} x_{2}^{4} x_{3}^{7}+x_{1}^{4} x_{2}^{9} x_{3}^{7}+x_{1}^{7} x_{2}^{9} x_{3}^{4}+x_{1}^{7} x_{2}^{4} x_{3}^{9}+x_{1}^{4} x_{2}^{7} x_{3}^{9}$.

Combinatorial Models for Key and Atom Polynomials

Guilherme

Example 3: $x_{1} x_{2} x_{3}$.

Symmetric Monomial Basis of Sym_{n}

A symmetric monomial is the sum of all monomials obtained by rearranging the exponents of a monomial.

Example 1: $x_{1}^{9} x_{2}^{7} x_{3}^{4}+x_{1}^{9} x_{2}^{4} x_{3}^{7}+x_{1}^{4} x_{2}^{9} x_{3}^{7}+x_{1}^{7} x_{2}^{9} x_{3}^{4}+x_{1}^{7} x_{2}^{4} x_{3}^{9}+x_{1}^{4} x_{2}^{7} x_{3}^{9}$.
Example 2: $x_{1}^{4} x_{2} x_{3}+x_{1} x_{2}^{4} x_{3}+x_{1} x_{2} x_{3}^{4}$.
Example 3: $x_{1} x_{2} x_{3}$.

Each symmetric monomial is defined by the sequence of its exponents in decreasing order. In the examples:

$$
(9,7,4), \quad(4,1,1), \quad(1,1,1)
$$

Symmetric Monomial Basis of Sym_{n}

A partition of length n is a weakly decreasing sequence

$$
\begin{gathered}
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{Z}_{\geq 0}{ }^{n} \\
\text { with } \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} .
\end{gathered}
$$

Combinatorial Models for Key and Atom Polynomials

Guilherme
Zeus Dantas e Moura

Symmetric Monomial Basis of Sym n

A partition of length n is a weakly decreasing sequence

$$
\begin{gathered}
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{Z}_{\geq 0}{ }^{n} \\
\text { with } \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} .
\end{gathered}
$$

Combinatorial Models for Key and Atom Polynomials

Guilherme

Each symmetric monomial of Sym_{n} is

$$
m_{\lambda}=\sum_{\text {rearrangements } \alpha \text { of } \lambda} x^{\alpha}
$$

Symmetric Monomial Basis of Sym_{n}

A partition of length n is a weakly decreasing sequence

$$
\begin{gathered}
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{Z}_{\geq 0}{ }^{n} \\
\text { with } \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} .
\end{gathered}
$$

Combinatorial Models for Key and Atom Polynomials

Guilherme

Sym $_{n}$ has a basis of symmetric monomials:

$$
\left\{m_{\lambda} \mid \lambda \text { is a partition of length } n\right\} .
$$

Checkpoint

Combinatorial
Models for Key and Atom Polynomials

Guilherme
Zeus Dantas e Moura

Motivation
Intuition
Questions
Definitions
Summary

New Perspective

Combinatorial
Models for Key and Atom Polynomials

Guilherme

Big Picture:
understanding $\kappa_{\alpha}, A_{\alpha} \quad \Longrightarrow \quad$ understanding $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ understanding $s_{\lambda} \quad \Longrightarrow \quad$ understanding Sym $_{n}$

Some intuition on $\kappa_{\alpha}, A_{\alpha}$, and s_{λ}

This diagram for partition $\lambda=(2,1,0)$ and its rearrangements

$$
\alpha=(2,1,0), \quad(1,2,0), \quad(2,0,1), \quad(1,0,2), \quad(0,2,1), \quad(0,1,2)
$$

Combinatorial Models for Key and Atom Polynomials

Guilherme

Example of s_{λ}

Combinatorial Models for Key and Atom Polynomials

Guilherme

Zeus Dantas e Moura

$$
s_{(2,1,0)}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+2 x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2} .
$$

Motivation

Intuition
Questions
Definitions
Summary

Example of κ_{α}

$\kappa_{(1,2,0)}$

$\kappa_{(2,0,1)}$

$\kappa_{(0,1,2)}$

Combinatorial Models for Key and Atom
Polynomials

Guilherme

Zeus Dantas e Moura

Motivation
Intuition
Questions
Definitions
Summary

Example of A_{α}

A(0,2,1)

$A_{(2,0,1)}$
$A_{(0,1,2)}$

Comparing κ_{α} and A_{α}

Combinatorial Models for Key and Atom
Polynomials
Guilherme
Zeus Dantas e Moura

Motivation

Intuition
Questions
Definitions
Summary

Littlewood-Richardson Rule

The product of two Schur polynomials is a linear combination of Schur polynomials:

$$
s_{\lambda} \cdot s_{\mu}=\sum_{\nu} c_{\lambda, \mu}^{\nu} \cdot s_{\nu}, \quad c_{\lambda, \mu}^{\nu} \in \mathbb{Z}
$$

Combinatorial
Models for Key and Atom
Polynomials
Guilherme
Zeus Dantas e Moura

Littlewood-Richardson Rule

Combinatorial Models for Key and Atom Polynomials

Guilherme
The product of two Schur polynomials is a linear combination of Schur polynomials:

$$
s_{\lambda} \cdot s_{\mu}=\sum_{\nu} c_{\lambda, \mu}^{\nu} \cdot s_{\nu}, \quad c_{\lambda, \mu}^{\nu} \in \mathbb{Z}
$$

The Littlewood-Richardson Rule states that

$$
c_{\lambda, \mu}^{\nu}=\begin{gathered}
\text { number of semistandard skew tableaux } \\
\text { of shape } \nu / \lambda \text { and weight } \mu
\end{gathered}
$$

Corollary: $c_{\lambda, \mu}^{\nu}$ are nonnegative integers.

Product of Key Polynomials in Key Basis

The $\kappa_{\alpha} \cdot \kappa_{\beta}$ is a polynomial.
Thus, $\kappa_{\alpha} \cdot \kappa_{\beta}$ is a linear combination of key polynomials:

$$
\kappa_{\alpha} \cdot \kappa_{\beta}=\sum_{\gamma} c_{\alpha, \beta}^{\gamma} \cdot \kappa_{\gamma}, \quad c_{\alpha, \beta}^{\gamma} \in \mathbb{Z}
$$

Combinatorial Models for Key and Atom Polynomials

Guilherme
Zeus Dantas e Moura

Product of Key Polynomials in Key Basis

The $\kappa_{\alpha} \cdot \kappa_{\beta}$ is a polynomial.
Thus, $\kappa_{\alpha} \cdot \kappa_{\beta}$ is a linear combination of key polynomials:

$$
\kappa_{\alpha} \cdot \kappa_{\beta}=\sum_{\gamma} c_{\alpha, \beta}^{\gamma} \cdot \kappa_{\gamma}, \quad c_{\alpha, \beta}^{\gamma} \in \mathbb{Z}
$$

Combinatorial Models for Key and Atom Polynomials

Guilherme

Research Question: Find a combinatorial description of the integer coefficients $c_{\alpha, \beta}^{\gamma}$ above.

Product of Key Polynomials in Key Basis

The $\kappa_{\alpha} \cdot \kappa_{\beta}$ is a polynomial.
Thus, $\kappa_{\alpha} \cdot \kappa_{\beta}$ is a linear combination of key polynomials:

$$
\kappa_{\alpha} \cdot \kappa_{\beta}=\sum_{\gamma} c_{\alpha, \beta}^{\gamma} \cdot \kappa_{\gamma}, \quad c_{\alpha, \beta}^{\gamma} \in \mathbb{Z}
$$

Research Question: Find a combinatorial description of the integer coefficients $c_{\alpha, \beta}^{\gamma}$ above.

Spoiler: The coefficient $c_{\alpha, \beta}^{\gamma}$ are can be negative.
Example: $\kappa_{(0,1)} \kappa_{(1,0,1)}=\kappa_{(1,1,1)}+\kappa_{(1,2)}+\kappa_{(2,0,1)}-\kappa_{(2,1)}$.

Product of Key Polynomials in Atom Basis

Combinatorial Models for Key and Atom Polynomials

Guilherme
Zeus Dantas e Moura
$\kappa_{\alpha} \cdot \kappa_{\beta}$ is a linear combination of atom polynomials:

$$
\kappa_{\alpha} \cdot \kappa_{\beta}=\sum_{\gamma} d_{\alpha, \beta}^{\gamma} \cdot A_{\gamma}, \quad d_{\alpha, \beta}^{\gamma} \in \mathbb{Z}
$$

Product of Key Polynomials in Atom Basis

Combinatorial Models for Key and Atom Polynomials

Guilherme
$\kappa_{\alpha} \cdot \kappa_{\beta}$ is a linear combination of atom polynomials:

$$
\kappa_{\alpha} \cdot \kappa_{\beta}=\sum_{\gamma} d_{\alpha, \beta}^{\gamma} \cdot A_{\gamma}, \quad d_{\alpha, \beta}^{\gamma} \in \mathbb{Z}
$$

Research Question: Find a combinatorial description of the integer coefficients $d_{\alpha, \beta}^{\gamma}$.

Conjecture (Reiner \& Shimozono): The coefficients $d_{\alpha, \beta}^{\gamma}$ are nonnegative integers.

Many equivalent definitions

There are many equivalent definitions of key, atom, and Schur polynomials.

- using divided difference operators (more algebraic approach),
- using keys of Young tableaux (more combinatorial approach),
- using skyline augmented tableaux (another combinatorial approach),
- using Demazure crystals and Kashiwara operators (algebraic and combinatorial approach),
- many other equivalent definitions.

Many equivalent definitions

There are many equivalent definitions of key, atom, and Schur polynomials.

- using divided difference operators (more algebraic approach),
- using keys of Young tableaux (more combinatorial approach),
- using skyline augmented tableaux (another combinatorial approach),
- using Demazure crystals and Kashiwara operators (algebraic and combinatorial approach),
- many other equivalent definitions.

Many equivalent definitions

There are many equivalent definitions of key, atom, and Schur polynomials.

- using divided difference operators (more algebraic approach),
- using keys of Young tableaux (more combinatorial approach),
- using skyline augmented tableaux (another combinatorial approach),
- using Demazure crystals and Kashiwara operators (algebraic and combinatorial approach),
- many other equivalent definitions.

Young Diagram

Combinatorial Models for Key and Atom Polynomials

Guilherme

Semistandard Young Tableau (SSYT)

Combinatorial Models for Key and Atom Polynomials

A SSYT is a filling of a Young diagram
with $\{1,2, \ldots, n\}$ such that the entries are weakly increasing along rows and strictly increasing down columns.

Example: An SSYT of shape $\lambda=(3,3,2,2)$.
Guilherme

	1	1	3
	2	3	5
	3	4	
	4	5	

Extracting monomials from SSYT

Combinatorial Models for Key and Atom Polynomials

Guilherme
Zeus Dantas e Moura

Motivation
Intuition
Questions
Definitions
Summary

1	1	3
2	3	5
3	4	
4	5	

$\longmapsto \quad x_{1}^{2} x_{2}^{1} x_{3}{ }^{3} x_{4}{ }^{2} x_{5}{ }^{2}$

Schur Polynomial

Combinatorial
Models for Key and Atom
Polynomials
Guilherme
Zeus Dantas e Moura

For each partition λ, there is a Schur polynomial s_{λ}.
The Schur polynomial s_{λ} is the sum of all monomials corresponding to SSYTs of shape λ.

$$
s_{\lambda}=\sum_{\text {SSYT } T \text { of shape } \lambda} x^{T} .
$$

Schur Polynomial

Combinatorial Models for Key and Atom Polynomials

Guilherme Zeus Dantas e Moura

For each partition λ, there is a Schur polynomial s_{λ}.
The Schur polynomial s_{λ} is the sum of all monomials corresponding to SSYTs of shape λ.

$$
s_{\lambda}=\sum_{\text {SSYT } T \text { of shape } \lambda} x^{T} .
$$

Fun Fact: The Schur polynomial s_{λ} is symmetric.

Example of Schur Polynomial

Combinatorial Models for

$$
s_{(2,1,0)}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+2 x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}
$$

Combinatorial
Models for Key and Atom Polynomials

Guilherme Zeus Dantas e Moura

Motivation
Intuition
Questions
Definitions
Summary

Example:

$$
(1,3,0,4,2) \quad \longmapsto
$$

1	2	2	4
2	4	4	
4	5		
5			

Attention: Not all SSYTs can be obtained as keys.

Right Key of a SSYT

Combinatorial
Models for Key and Atom
Polynomials
Guilherme
Zeus Dantas e Moura

Motivation
Attention: Not all SSYTs can be obtained as keys.
There is a process to obtain the right key of a SSYT, by making the entries slightly larger (not defined here).

Example

Right Key of a SSYT

Attention: Not all SSYTs can be obtained as keys.
Combinatorial

There is a process to obtain the right key of a SSYT, by making the entries slightly larger (not defined here).

Example

Right Key of a SSYT

Attention: Not all SSYTs can be obtained as keys.
Combinatorial

There is a process to obtain the right key of a SSYT, by making the entries slightly larger (not defined here).

Example

Right Key of a SSYT

Attention: Not all SSYTs can be obtained as keys.
Combinatorial

There is a process to obtain the right key of a SSYT, by making the entries slightly larger (not defined here).

Example

Right Key of a SSYT

Attention: Not all SSYTs can be obtained as keys.
Combinatorial Models for Key and Atom Polynomials

Guilherme

There is a process to obtain the right key of a SSYT, by making the entries slightly larger (not defined here).

Example

Right Key of a SSYT

Attention: Not all SSYTs can be obtained as keys.
Combinatorial Models for Key and Atom Polynomials

There is a process to obtain the right key of a SSYT, by making the entries slightly larger (not defined here).

Example

Right Key of a SSYT

Attention: Not all SSYTs can be obtained as keys.
Combinatorial
Models for
Key and Atom
Polynomials
Guilherme

There is a process to obtain the right key of a SSYT, by making the entries slightly larger (not defined here).

Example

Right Key of a SSYT

Attention: Not all SSYTs can be obtained as keys.
Combinatorial
Models for
Key and Atom
Polynomials
Guilherme

There is a process to obtain the right key of a SSYT, by making the entries slightly larger (not defined here).

Example

Right Key of a SSYT

Attention: Not all SSYTs can be obtained as keys.
Combinatorial
Models for
Key and Atom
Polynomials
Guilherme

There is a process to obtain the right key of a SSYT, by making the entries slightly larger (not defined here).

Example

Right Key of a SSYT

Attention: Not all SSYTs can be obtained as keys.
Combinatorial
Models for
Key and Atom
Polynomials
Guilherme

There is a process to obtain the right key of a SSYT, by making the entries slightly larger (not defined here).

Example

Atom Polynomial

Combinatorial Models for Key and Atom Polynomials

Guilherme
Zeus Dantas e Moura

Motivation
Intuition
Questions
Definitions
Summary

Key Polynomial

Combinatorial Models for Key and Atom Polynomials

Guilherme
Zeus Dantas e Moura

Motivation
The key polynomial κ_{α} is the sum of all monomials corresponding to SSYTs with right key at most key (α).

$$
\kappa_{\alpha}=\sum_{\substack{\operatorname{SSYT} T \\ k_{+}(T) \leq \operatorname{key}(\alpha)}} x^{T} .
$$

Note: " \leq " on tableaux is entry-wise comparison.

Comparing κ_{α} and A_{α} again

Combinatorial Models for Key and Atom Polynomials

Guilherme
Zeus Dantas e Moura

Motivation
Intuition

Questions
Definitions
Summary

Product of Key Polynomials in Atom Basis

Research Question: Find a combinatorial description of the integer coefficients $d_{\alpha, \beta}^{\gamma}$.

Conjecture: The coefficients $d_{\alpha, \beta}^{\gamma}$ are nonnegative integers.

Combinatorial
Models for Key and Atom Polynomials

Guilherme

Zeus Dantas e
Moura

Motivation

Intuition

Questions
Definitions

Summary

Product of Tableaux

 Key and AtomPolynomials
Guilherme
Zeus Dantas e Moura

There's a way to define the product $T \cdot U$ of tableaux.
Example:

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 2 \\
\hline 2 & . & 1 \\
\hline 3 & & \\
\hline 1 & 1 & 1 \\
\hline 2 & 2 & 3 \\
\hline
\end{array} .
$$

Applying the definition

Combinatorial Models for

Guilherme Moura

$$
\begin{aligned}
& \left.\kappa_{\alpha} \kappa_{\beta}=\left(\sum_{\substack{\operatorname{SSYT} T \\
\mathrm{~K}_{+}(T) \leq \text { key }(\alpha)}} x^{T}\right) \sum_{\substack{\operatorname{SSYT}}} x^{U}\right) \\
& =\sum_{\text {SSYT } T, U} x^{T} x^{U} \\
& \mathrm{~K}_{+}(T) \leq \mathrm{key}(\alpha) \\
& \mathrm{K}_{+}(U) \leq \operatorname{key}(\beta) \\
& =\sum_{\text {SSYT } T, U} x^{T \cdot U} \text {. } \\
& \mathrm{K}_{+}(T) \leq \operatorname{key}(\alpha) \\
& \mathrm{K}_{+}(U) \leq \operatorname{key}(\beta)
\end{aligned}
$$

Wishful thinking

It suffices to show that the multiset

$$
\left\{T \cdot U: \begin{array}{c}
\operatorname{SSYT} T, U \\
\mathrm{~K}_{+}(T) \leq \operatorname{key}(\alpha) \\
\mathrm{K}_{+}(U) \leq \operatorname{key}(\beta)
\end{array}\right\}
$$

Combinatorial Models for Key and Atom
Polynomials
Guilherme
can be partitioned into sets of the form

$$
\left\{V: \underset{\mathrm{K}_{+}(V)=\operatorname{sey}(\gamma)}{\operatorname{SSYT} V}\right.
$$

Wishful thinking

It suffices to show that the multiset

$$
\left\{T \cdot U: \begin{array}{c}
\operatorname{SSYT} T, U \\
\mathrm{~K}_{+}(T) \leq \operatorname{key}(\alpha) \\
\mathrm{K}_{+}(U) \leq \operatorname{key}(\beta)
\end{array}\right\}
$$

can be partitioned into sets of the form

$$
\left\{V: \underset{\mathrm{k}_{+}(V)=\operatorname{sey}(\gamma)}{\operatorname{SSYT} V}\right.
$$

Spoiler: It can't. There are counterexample.
Underlying issue: The structure of tableaux is more strict than the structure of the polynomials/monomials.

