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Abstract. We present a survey on some combinatorial models for key
polynomials and atom polynomials, in the search for a combinatorial
model for the coefficients of the product of two key polynomials in either
the key polynomial basis or the atom polynomial basis.
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1. Introduction

The polynomial ring Z[x1, x2, . . . , xn], whose elements are the polynomials
with integer coefficients in n variables x1, x2, . . . , xn, is a fundamental alge-
braic object. Focusing on its additive structure, we can view the polynomial
ring as a Z-module; that is, a module over the ring of integers. A basis for
a module is a linearly independent set of elements such that every element
in the module can be written as an integral linear combination of the basis
elements. The canonical basis of the polynomial ring Z[x1, x2, . . . , xn] is the
monomial basis, which consists of monomials xα = xα1

1 xα2
2 · · ·xαn

n , indexed
by compositions α of length n.

This thesis is concerned with other bases of the polynomial ring: the basis
of key polynomials and the basis of atom polynomials. These polynomials
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provide another perspective on the structure of the polynomial ring and have
connections to various areas of mathematics.

Before introducing these polynomials, we discuss a well-studied basis of
another ring, the ring of symmetric polynomials. The symmetric group Sn

naturally acts on the variables x1, x2, . . . , xn by permuting them, inducing
a corresponding action on the polynomial ring Z[x1, x2, . . . , xn]. The ring
of symmetric polynomials is the subring of Z[x1, x2, . . . , xn] consisting of
the polynomials that are fixed by the action of Sn. A basis of the ring of
symmetric polynomials is the symmetric monomial basis, consisting of the
polynomials mλ =

∑
α xα, indexed by partitions λ of length n, where the

sum is over all rearrangements α of the parts of λ.
Schur polynomials, indexed by partitions, play a central role in the study

of symmetric polynomials, with applications in representation theory, combi-
natorics, and algebraic geometry. They form a basis for the ring of symmetric
polynomials; that is, any symmetric polynomial can be written as an integral
linear combination of Schur polynomials. In particular, the product of two
Schur polynomials can be written as an integral linear combination of Schur
polynomials; that is, given partitions λ and µ,

sλsµ =
∑

ν

cν
λµsν ,

where the sum is over partitions ν and the coefficients cν
λµ are integers.

The Littlewood-Richardson rule gives a combinatorial interpretation for
the coefficients above, stating that cν

λµ is the number of tableaux with special
properties, which is remarkable. In particular, a corollary of the Littlewood-
Richardson rule is that the coefficients cν

λµ are nonnegative.
In the polynomial ring Z[x1, x2, . . . , xn], the key polynomials play a role

analogous to the role of Schur polynomials in the ring of symmetric polyno-
mial. Key polynomials are indexed by compositions of length n, and form
a basis of Z[x1, x2, . . . , xn]. Closely related to the key polynomials are the
atom polynomials, also indexed by compositions, which also form a basis of
Z[x1, x2, . . . , xn].

Since they form a basis, any polynomial can be written as an integral linear
combination of the basis elements. In particular, the product of two basis ele-
ments can be written as an integral linear combination of the basis elements.
The motivation for this thesis is to give a combinatorial interpretation for
the coefficients of these products, or more humbly, to discover whether such
coefficients are always nonnegative.

The product of two key polynomials does not always have nonnegative
coefficients when expanded in the key polynomial basis, for example,

κ01κ101 = κ111 + κ12 + κ201 − κ21.
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Similarly, the product of two atom polynomials does not always have nonneg-
ative coefficients when expanded in the atom polynomial basis, for example,

A01A01 = A02 − A11.

In contrast, Haglund, Luoto, Mason, and van Willigenburg [HLMW11]
introduced a combinatorial model for the coefficients of the product of an
atom polynomial and a Schur polynomial in the atom polynomial basis, with
the corollary that these coefficients are nonnegative. They also introduced a
combinatorial model for the coefficients of the product of a key polynomial
and a Schur polynomial in the key polynomial basis, with the corollary that
these coefficients are nonnegative.

The open question for this thesis is for a combinatorial model for the co-
efficients of the product of two key polynomials in either the key polynomial
basis or the atom polynomial basis. It is conjectured that the latter coeffi-
cients are nonnegative (Conjecture 3.20). This conjecture is the north star
of this work. Towards this goal, we introduce multiple combinatorial models
for key and atom polynomials, in the hope that the more appropriate model
will lead to a solution for the open question.

Section 2 introduces necessary objects, such as permutations, composi-
tions, and partitions, which index the key and atom polynomials. Sec-
tion 3 introduces multiple families of linear operators on the polynomial ring
Z[x1, x2, . . . ], uses these operators to define key and atom polynomials, and
develops on properties and questions related to these polynomials. Section 4
introduces semistandard tableaux, and their right keys, which produce an
alternative formula for key and atom polynomials, and also introduces the
plactic monoid structure of semistandard tableaux. Section 5 shows that
the plactic monoid structure of semistandard tableaux is unable to prove
the nonnegativity of the coefficients of the product of two key polynomials.
Section 6 introduces Kashiwara crystals, Demazure crystals, and their ten-
sor products, which provide another formula for key and atom polynomials.
Finally, Section 7 shows that the crystal structure of the tensor product is
unable to prove the nonnegativity of the coefficients of the product of two
key polynomials.

1.1. Acknowledgments. I would like to thank my advisor, Prof. Elizabeth
Milićević, for not only guiding me to the topic of my thesis but also for her
invaluable advice, support, and encouragement, which were key to the com-
pletion of this work. I extend my gratitude to the Department of Mathematics
and Statistics at Haverford College for providing a supportive environment
to explore my interests in Mathematics throughout my four years here.

Many computations and figures in this thesis were generated using the
SageMath software [Sage], and I am grateful for the open-source community
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that maintains this software and, in particular, the contributions from the
Sage-Combinat community [SC].

Finally, I am also grateful for the unwavering support and encouragement
from my family and friends, and in particular, I would like to thank my
parents for encouraging me to pursue any of my interests.

2. Definitions

In this section, we introduce necessary objects, such as permutations, com-
positions, and partitions. These objects will index the key and atom polyno-
mials, and their properties will be used to define the key and atom polyno-
mials.

2.1. Permutations. Let Sn denote the symmetric group of permutations of
{1, . . . , n}. Let S∞ denote the symmetric group of permutations of Z>0 with
finitely many non-fixed points. We identify Sn with the subgroup of S∞ that
fixes all i > n. We write permutations in one-line notation, using brackets.
For example, [4, 1, 3, 2] denotes the permutation that maps 1 7→ 4, 2 7→ 1,
3 7→ 3, and 4 7→ 2.

Let σi denote the transposition of i and i+1, known as the ith elementary
transposition. Hence,

Sn+1 = ⟨σ1, σ2, . . . , σn⟩, and S∞ = ⟨σ1, σ2, . . . ⟩.
For example, [4, 1, 3, 2] = σ3σ2σ1σ3. However, the decomposition of a permu-
tation into elementary transpositions is not unique. Indeed, the elementary
transpositions satisfy certain relations, stated in Proposition 2.1.

Proposition 2.1 ([Mac91, p. 1]). Let i, j ∈ Z>0. Then,
σ2

i = 1, (1a)
σiσj = σjσi, if |i− j| > 1, (1b)

σiσi+1σi = σi+1σiσi+1. (1c)

Therefore, it follows that [4, 1, 3, 2] = σ2σ3σ2σ3σ1σ3, because
σ2σ3σ2σ3σ1σ3 = σ2σ3σ2σ1σ3σ3 (by (1b))

= σ2σ3σ2σ1 (by (1a))
= σ3σ2σ3σ1 (by (1c))
= σ3σ2σ1σ3 (by (1b))
= [4, 1, 3, 2].

A word for a permutation w ∈ S∞ is a sequence a = a1a2 . . . ak of positive
integers such that w = σa1σa2 · · ·σak

. The length of a word a = a1a2 . . . ak

is k, denoted by ℓ(a). The length of a permutation w ∈ S∞ is the minimum
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length of a word for w, denoted by ℓ(w); that is,
ℓ(w) = min{ℓ(a) : a is a word for w}.

A word a for w is reduced if ℓ(a) = ℓ(w). Let RW(w) denote the set of
reduced words for w. For example, ℓ([4, 1, 3, 2]) = 4 and

RW([4, 1, 3, 2]) =
{
3213, 3231, 2321

}
.

Proposition 2.2 (Matsumoto’s Theorem, [Mac91, p. 25]). Let w ∈ S∞. Let
GR(w) denote the graph whose vertex set is RW(w), in which a ∼ b is an
edge of GR(w) if either
• a is obtained from b by interchanging two consecutive terms i, j such that
|i− j| > 1 (refer to Equation (1b)), or
• a is obtained from b by replacing three consecutive terms i, j, i such that
|i− j| = 1 by j, i, j (refer to Equation (1c)).

The graph GR(w) is connected.

Intuitively, Proposition 2.2 states that, if we know how to write a permu-
tation w as a reduced word, then any other reduced word can be obtained
from that one using Equations (1b) and (1c).

Definition 2.3 (Bruhat order on S∞, [Mac91, p. 7, inferred from Proposi-
tion 1.17]). The Bruhat order on S∞ is the partial order ⩽ such that, for
all w1, w2 ∈ S∞, we have w1 ⩽ w2 if a reduced word for w1 is a subsequence
of a reduced word for w2.

Note that subsequences do not need to appear consecutively. For example,
[2, 1, 4, 3] = σ3σ1 ⩽ σ3σ2σ1σ3 = [4, 1, 3, 2].

2.2. Compositions and Partitions. A composition α = α1α2 . . . is an
infinite sequence of nonnegative integers with finitely many nonzero terms,
indexed by the positive integers. We write α |= n to mean that the sum
of the terms of α is n, in which case we say that α is a composition of n.
Given two compositions α and β, we write α ⊆ β to mean that αi ⩽ βi for
all i ∈ Z>0. We associate a finite sequence of nonnegative integers with a
composition by adding zeros to the end of the sequence.

A partition λ = λ1λ2 . . . is a weakly decreasing composition. We write
λ ⊢ n to mean that the sum of the terms of λ is n, in which case we say that
λ is a partition of n.

For readability, we write compositions and partitions without commas —
all examples of compositions and partitions in this thesis have single-digit
parts. For example, the sequence 130300 . . . = 1303 is a composition of 7,
but not a partition. The sequence 33100 . . . = 331 is a partition of 7, hence
also a composition of 7.
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Let S∞ act on the right on the set of compositions by permuting the entries
[RS95, p. 109]; that is,

α · w = αw(1)αw(2) . . . .

If we view a permutation w as a function w : Z>0 → Z>0 and a composition
α as a function α : Z>0 → Z⩾0, then the action of w on α is given by the
functional composition α ◦ w : Z>0 → Z⩾0, explaining the choice of a right
action. For example,

1301 · [4, 1, 3, 2] = 1103,

because

1 [4,1,3,2]7−−−−−→ 4 13017−−−→ 1

2 [4,1,3,2]7−−−−−→ 1 13017−−−→ 1

3 [4,1,3,2]7−−−−−→ 3 13017−−−→ 0

4 [4,1,3,2]7−−−−−→ 2 13017−−−→ 3.

Given a composition α, it is clear that there exists a unique partition,
denoted by sort α, in the S∞-orbit of α, obtained by sorting the entries of α
in weakly decreasing order. For example, sort(1301) = 311.

Moreover, given a composition α, there exists a unique permutation w ∈
S∞ of minimal length such that α = sort α · w. Such a permutation is called
the shortest sorting permutation of α. For example, the shortest sorting
permutation of 1301 is [2, 1, 4, 3] = σ1σ3.

Definition 2.4 (Bruhat order on compositions). The Bruhat order on the
set of compositions is the partial order ⩽ such that, for all compositions α, β,
we have α ⩽ β if sort α = sort β and the shortest sorting permutation of α is
smaller, in the Bruhat order on S∞, than the shortest sorting permutation
of β.

3. Linear Operators on the Polynomial Ring

In this section, we introduce multiple families of linear operators on the
polynomial ring Z[x1, x2, . . . ]. The operators of the first family are induced
by the action of the symmetric group S∞ on the variables x1, x2, . . .. The
operators of the second family are the divided difference operators ∂i, from
which the operators of the third family, πi, and the operators of the fourth
family, θi, are derived. At the end of this section, key polynomials are defined
in terms of the operators πi, and atom polynomials are defined in terms of
the operators θi.

The content of this section is based on Macdonald [Mac91, Chapter 2],
Reiner and Shimozono [RS95, Section 2], and Pun [Pun16, Chapter 2].
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3.1. Symmetric action on polynomial ring. The goal of this subsection
is to understand the permutations of the symmetric group S∞ (or, more
particularly, the transpositions) as linear operators on the polynomial ring
Z[x1, x2, . . . ]. Given a composition α, we define its monomial by

xα = xα1
1 xα2

2 · · · .

For example, x111 = x1x2x3 and x0002 = x2
4.

Recall that S∞ is the symmetric group of permutations of Z>0 with finitely
many non-fixed points. Let S∞ act (on the left) on Z[x1, x2, . . . ] by permuting
the variables. Explicitly, if w ∈ S∞ and f ∈ Z[x1, x2, . . . ], then

(wf)(x1, x2, . . . ) = f(xw(1), xw(2), . . . ).
For i ∈ Z>0, let σi ∈ S∞ denote the transposition of i and i + 1. Using

the action of S∞ on Z[x1, x2, . . . ], we interpret σi as a linear operator on
Z[x1, x2, . . . ]. For example,

σ2
(
x1x2 + x2x3 + x2

3

)
= x1x3 + x2x3 + x2

2.

Note that σi preserves the degree of a monomial.

3.2. Divided difference operators. The goal of this subsection is to intro-
duce the divided difference operators ∂i on the polynomial ring Z[x1, x2, . . . ],
and to understand their properties.
Definition 3.1 (Divided difference operators ∂i, [Mac91, pp. 23–24]). The
divided difference operator ∂i on Z[x1, x2, . . . ] is defined by

∂if = f − σif

xi − xi+1
. (2)

We note that, although the right expression of Equation (2) involves poly-
nomial division, the result is always a polynomial; that is, f − σif is always
a multiple of xi − xi+1. Explicitly, if f = xr

i xs
i+1 we have

∂i(xr
i xs

i+1) =
xr

i xs
i+1 − xr

i+1xs
i

xi − xi+1
=


∑

xp
i yq

i+1 if r > s,

0 if r = s,

−
∑

xp
i yq

i+1 if r < s,

where the sum is over (p, q) such that p + q = r + s − 1 and max(p, q) <
max(r, s) [Mac91, pp. 23–24]. For example,

∂1(x3
1) = x3

1 − σ1,2x3
1

x1 − x2
= x3

1 − x3
2

x1 − x2
= x2

1 + x1x2 + x2
2.

We now present three propositions that describe the behavior of the di-
vided difference operators. Proposition 3.2 describes relations between ∂i and
σi, Proposition 3.3 describes relations between ∂i and ∂j in an analogous way
to Proposition 2.1, and Proposition 3.4 describes how ∂i acts on a product
of two polynomials.



8 GUILHERME ZEUS DANTAS E MOURA

Proposition 3.2 ([Mac91, pp. 23–24]). Let i ∈ Z>0. Then,
∂iσi = −∂i, (3a)
σi∂i = ∂i. (3b)

Proof. We compute that, for any f ∈ Z[x1, x2, . . . ],

∂iσif = σif − σ2
i f

xi − xi+1
= − f − σif

xi − xi+1
= −∂if ;

and therefore Equation (3a) is true. Equation (3b) is true because, for any
f ∈ Z[x1, x2, . . . ], using Equation (1a),

σi∂if = σi

(
f − σif

xi − xi+1

)
= σif − σ2

i f

xi+1 − xi
= f − σif

xi − xi+1
= ∂if. □

Note that Equation (3b) means that ∂if is symmetric in the variables xi

and xi+1.

Proposition 3.3 ([Mac91, pp. 23–24]). Let i, j ∈ Z>0. Then,
∂2

i = 0, (4a)
∂i∂j = ∂j∂i, if |i− j| > 1, (4b)

∂i∂i+1∂i = ∂i+1∂i∂i+1. (4c)

Proof. Equation (4a) is true because, for any f ∈ Z[x1, x2, . . . ], using Equa-
tion (3b),

∂2
i f = ∂if − σi∂if

xi − xi+1
= 0.

Equation (4b) is true because, for any f ∈ Z[x1, x2, . . . ],

∂i∂jf = ∂jf − σi∂jf

xi − xi+1
= f − σjf − σif + σiσjf

(xi − xi+1)(xj − xj+1) ,

which is invariant under swapping i and j, using Equation (1b). Equa-
tion (4c) is true by an analogous but more tedious computation, which we
omit here. □

Divided difference operators satisfy a product rule analogous to the Leibniz
product rule for derivatives.

Proposition 3.4 (Product rule for divided differences, [Mac91, pp. 23–24]).
Given f, g ∈ Z[x1, x2, . . . ], we have

∂i(fg) = (∂if)g + (σif)(∂ig).

With the fundamental properties of divided difference operators now es-
tablished, our next step is to extend these operators from being indexed
by integers to being indexed by words, and ultimately to being indexed by
permutations.
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Recall any permutation can be expressed as a composition of these trans-
positions in a specific order. Similarly, we extend this concept to divided
difference operators. In Definition 3.5, we introduce a notation for the com-
position of divided difference operators.

Definition 3.5 (Divided difference operators ∂a, [Mac91, p. 24]). For a word
a = a1a2 . . . ak, we define

∂a = ∂a1∂a2 · · · ∂ak
.

Recall that the decomposition of a permutation into elementary transpo-
sitions is not unique. Even when expressing a permutation as a composition
of elementary transpositions with the minimum length, it is still possible
that two minimum-length compositions are different, despite representing
the same permutation. Proposition 3.6 establishes an analogous statement
for divided difference operators. If two words serve as reduced words for
the same permutation, their corresponding divided difference operators are
identical.

Proposition 3.6 ([Mac91, p. 24]). For a permutation w ∈ S∞, if a and b
are two reduced words for w, then ∂a = ∂b.

Proof (adapted from [Mac91, p. 25]). From Proposition 2.2, we know that a
can be obtained from b by a sequence of operations that are interchanges
of two consecutive terms i, j such that |i− j| > 1 and replacements of three
consecutive terms i, j, i such that |i−j| = 1 by j, i, j. Equations (4b) and (4c)
imply that those operations preserve the divided difference operator of the
word, and therefore ∂a = ∂b. □

Definition 3.7 (Divided difference operators ∂w, [Mac91, p. 25]). Let w ∈
S∞. Using Proposition 3.6, we can unambiguously define

∂w = ∂a,

where a is any reduced word for w.

We emphasize the crucial requirement that a must be a reduced word for w,
rather than any arbitrary word representing w. In the case where a is a non-
reduced word for w, the resulting divided difference operator ∂a evaluates
to the zero operator [Mac91, p. 25]. Although we are drawing a parallel
between the divided difference operators and the elementary transpositions,
this observation highlights a distinction between them.

3.3. Isobaric divided difference operators. We now introduce two kinds
of isobaric divided difference operators, denoted by πi and θi, which are other
linear operators that preserve the degree of a monomial, differently from the
divided difference operators ∂i. The adjective ‘isobaric’ is used to emphasize
this degree-preserving property. The terminology ‘isobaric’ is not consistently
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used in the literature. Some authors use ‘isobaric’ to refer only to πi, and
some authors do not use the term ‘isobaric’ at all.

The pace of this subsection is faster than the previous one, because once
we define πi and θi, the process of extending them to words and permutations
is analogous to the process for ∂i.
Definition 3.8 (Isobaric divided difference operators πi and θi, [Mac91,
p. 27], [Pun16, p. 12]). For each i ∈ Z>0, define the isobaric divided dif-
ference operators πi and θi on Z[x1, x2, . . . ] by

πif = ∂i(xif) and θif = xi+1(∂if).
Proposition 3.9 ([Pun16, p. 14, Proposition 2.1]). Let i ∈ Z>0. Then,

πi = id + θi,

where id denotes the identity operator on Z[x1, x2, . . . ]. Equivalently, for any
f ∈ Z[x1, x2, . . . ],

πif = f + θif.

Proof. Apply the product rule for the divided differences (Proposition 3.4)
to the product xif and obtain

πif = ∂i(xif) = (∂ixi)f + (σixi)(∂if) = f + xi+1(∂if) = f + θif,

by noting that ∂ixi = 1 and σixi = xi+1. □

Proposition 3.10 ([Mac91, p. 28], [Pun16, pp. 14–16, Propositions 2.1–2.3]).
Let i, j ∈ Z>0. Then,

π2
i = πi (5a)

πiπj = πjπi, if |i− j| > 1 (5b)
πiπi+1πi = πi+1πiπi+1, (5c)

and
θ2

i = −θi (6a)
θiθj = θjθi, if |i− j| > 1 (6b)

θiθi+1θi = θi+1θiθi+1. (6c)

Definition 3.11 (Isobaric divided difference operators πa and θa, [Mac91,
p. 28]). For a sequence a = (a1, a2, . . . , ak) of positive integers, we define

πa = πa1πa2 · · ·πak
and θa = θa1θa2 · · · θak

.

Proposition 3.12 ([Mac91, p. 28]). For a permutation w ∈ S∞, if
w = σa1σa2 · · ·σak

and w = σb1σb2 · · ·σbk

are two reduced words for w, then πa = πb and θa = θb.
Proof. The proof is analogous to the proof of Proposition 3.6, and relies on
Equations (5b), (5c), (6b), and (6c). □
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Definition 3.13 (Isobaric divided difference operators πw and θw, [Mac91,
p. 28], [Pun16, p. 22]). Let w ∈ S∞. Using Proposition 3.12, we can unam-
biguously define

πw = πa and θw = θa,

where a is any reduced word for w.

Recall that Proposition 3.9 describes the relation between πi and θi, in-
dexed by integers. We generalize this relation to πw and θw, indexed by
permutations, in Proposition 3.14.

Proposition 3.14 ([Pun16, p. 22, Lemma 2.5]). For any permutation w ∈
S∞, we have

πw =
∑

w′⩽w

θw′ ,

where the sum is over all permutations w′ ∈ S∞ such that w′ ⩽ w in the
Bruhat order.

This result generalizes Proposition 3.9. By applying Proposition 3.14 to
w = σi, we obtain

πi = πσi =
∑

w′⩽σi

θw′ = θid + θσi = id + θi,

where id represents the identity permutation. Thus, we recover Proposi-
tion 3.9 as a special case of Proposition 3.14.

3.4. Key and Atom Polynomials. The goal of this subsection is to in-
troduce key and atom polynomials, which are polynomials in the variables
x1, x2, . . . that are indexed by compositions. Key polynomials are defined in
terms of the isobaric divided difference operators πw, and atom polynomi-
als are defined in terms of the divided difference operators θw. The content
of this subsection is based on Reiner and Shimozono [RS95, Section 2] and
Mason [Mas09].

Definition 3.15 (Key polynomials, [RS95, p. 109]). Let α be a composition.
Let λ = sort α and w be the shortest permutation such that λw = α. The
key polynomial κα, also known as the Demazure character, is defined
by

κα = πw(xλ).
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For example,
κ1021 = πσ2σ1σ3(x2

1x2x3)
= π2π1π3(x2

1x2x3)
= π2π1

(
x2

1x2x3 + x2
1x2x4

)
= π2

(
x2

1x2x3 + x1x2
2x3 + x2

1x2x4 + x1x2
2x4
)

= x2
1x2x3 + x1x2

2x3 + x1x2x2
3 + x2

1x2x4 + x2
1x3x4

+x1x2
2x4 + x1x2x3x4 + x1x3

2x4.

Definition 3.16 (Atom polynomial). Let α be a composition. Let λ = sort α
and w be the shortest permutation such that λw = α. The atom polyno-
mial Aα is defined by

Aα = θw(xλ).

For example,
A1021 = θσ2σ1σ3(x2

1x2x3)
= θ2θ1θ3(x2

1x2x3)
= θ2θ1(x2

1x2x4)
= θ2(x1x2

2x4)
= x1x2x3x4 + x1x2

3x4.

Key polynomials can be computed by summing atom polynomials. More
precisely, Proposition 3.17 gives a formula for a key polynomial as a sum of
atom polynomials.

Proposition 3.17 ([LS90], [Pun16, p. 29, Theorem 2.8.1]). Given a compo-
sition α,

κα =
∑
β⩽α

Aβ,

where the order ⩽ is the Bruhat order on compositions defined in Defini-
tion 2.4.

Proof. Follows from Proposition 3.14. □

The set of key polynomials and the set of atom polynomials are each a
basis for the polynomial ring Z[x1, x2, . . . ].

Proposition 3.18 ([LS90], [RS95], [Pun16, Theorem 2.8.3]). The sets
{κα : α is a composition} and {Aα : α is a composition}

of keys polynomials and of atom polynomials are each a basis for Z[x1, x2, . . . ].
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A proof of Proposition 3.18 can be found in Reiner and Shimozono [RS95],
and the main idea is to show that

κα = xα +
∑

β<RLα

cαβxβ,

where cαβ are nonnegative integers, and <RL is the reverse lexicographic
order defined by β <RL α if there exists a k satisfying βi = αi for all i > k
and βk < αk. This fact is used to show that the set of key polynomials forms
a basis for Z[x1, x2, . . . ]. Proposition 3.17 is then used to show that the set
of atom polynomials is a basis for Z[x1, x2, . . . ].

There are variations of these results for the case of a finite number of
variables.

Proposition 3.19 ([LS90], [Pun16, p. 29, Theorem 2.8.3]). The sets
{κα : α is a composition of length at most n} and
{Aα : α is a composition of length at most n}

are each a basis for Z[x1, x2, . . . , xn].

Of particular interest are the polynomials that can be written as a positive
linear combination of key polynomials, called key-positive polynomials; as
well as the polynomials that can be written as a positive linear combination
of atom polynomials, called atom-positive polynomials. As discussed in
Section 1, some key-positivity and atom-positivity results are known.

The product κακβ of two key polynomials is not always key-positive, for
example,

κ01κ101 = κ111 + κ12 + κ201 − κ21;
and the product AαAβ of two atom polynomials is not always atom-positive,
for example,

A01A01 = A02 − A11.

It is an open question whether the product of two key polynomials is always
atom-positive, a conjecture that first appeared in an unpublished work of
Victor Reiner and Mark Shimozono [Pun16, p. 32].

Conjecture 3.20 ([Pun16, p. 32, Conjecture 1]). Let α and β be composi-
tions. Then, κακβ is atom-positive; that is, there exist nonnegative integers
cγ

αβ such that
κακβ =

∑
γ

cγ
αβAγ ,

where the sum is over all compositions γ.

Pun [Pun16] proved that Conjecture 3.20 is true for α and β of length at
most 3; that is, for the product of key polynomials in Z[x1, x2, x3]. Conjec-
ture 3.20 is the north star of this work.
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4. Tableaux Combinatorics

In this section, we introduce combinatorial objects called tableaux that
can be used for studying key and atom polynomials.

4.1. Diagrams. In the context of diagrams, we think of Z2
>0 as the set of unit

boxes in the plane centered at the points with positive integer coordinates. A
diagram is a subset of Z2

>0. We use matrix-like coordinates, also known as
English notation, to graphically represent Z2

>0 as well as diagrams. Figure 1
shows the set Z2

>0, with its elements graphically represented as unit boxes in
the plane.

1, 1 1, 2 1, 3

2, 1 2, 2 2, 3

3, 1 3, 2 3, 3

Figure 1. The set Z2
>0, with its elements graphically represented

as unit boxes in the plane. The elements of the subset {1, 2, 3}2 ⊂
Z2

>0 are labeled with their coordinates.

The set Z2
>0 is partitioned into rows, where the ith row is the set {i}×Z>0,

and also partitioned into columns, where the jth column is the set Z>0×{j}.
The coordinatewise partial order on Z2

>0 is the partial order ⩽coord
given by

(i, j) ⩽coord (i′, j′) if and only if i ⩽ i′ and j ⩽ j′.

See Figure 2 for a graphical representation of the coordinatewise partial order
⩽coord on Z2

>0.

< < < <

< < < <

< < < <

< < < <

< < < <

< < < <

< < < <

< < < <

Figure 2. The set Z2
>0, with its elements ordered by the coordi-

natewise partial order ⩽coord. Although only the relations between
adjacent elements are shown, the relation between an arbitrary pair
of elements is determined by the transitivity of the relations in the
figure.
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The column order ⪯col is the total order given by
(i, j) ⪯col (i′, j′) if and only if j < j′ or (j = j′ and i ⩾ i′).

For example, Figure 3 shows the set {1, . . . , 6}2 ⊂ Z2
>0 ordered by the column

order ⪯col.

Figure 3. The set {1, . . . , 6}2 ⊂ Z2
>0 ordered by the column order

⪯col. Boxes with cooler colors are smaller than boxes with warmer
colors, with respect to the column order ⪯col. The arrows indicate
the direction of the orders, pointing from the smaller boxes to the
larger boxes.

A Young diagram is a diagram D ⊂ Z2
>0 such that, if (i, j) ∈ D, then

(i′, j′) ∈ D for all (i′, j′) ⩽coord (i, j). Given a partition λ, the Young
diagram of the partition λ is the subset of Z2

>0 given by{
(i, j) ∈ Z2

>0 : j ⩽ λi

}
.

For example, the Young diagram of 331 is the subset of Z2
>0 given by{

(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1)
}

,

which is graphically represented in Figure 4.

Figure 4. The Young diagram of the partition 331.

As an abuse of notation, we use λ to denote both the partition and its
Young diagram.

4.2. Tableaux. Given a diagram D, a tableau of shape D is a map T : D →
Z>0. For example, Figure 5 shows multiple examples of tableaux.

Given a tableau T , we define the weight of T as the composition wt(T ) =
α = (α1, α2, . . . ), where αi is the number of times i appears in T . Moreover,
we define the monomial

xT = xwt(T ) = x
wt(T )1
1 x

wt(T )2
2 · · · .
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For example, if T is the tableau in Figure 5a then wt(T ) = 211201 and
xT = x2

1x2x3x2
4x6.

Given a partition λ, a semistandard tableau T of shape λ is a tableau
T : λ→ Z>0 such that the entries in each column are strictly increasing, and
the entries in each row are weakly increasing. For example, Figure 5b shows
a semistandard tableau of shape 331.

4 1 6
3 4 1
2

(a) A tableau of shape 331
that is not semistandard.

1 1 2
2 3 3
4

(b) A semistandard
tableau of shape 331.

1 1 1
2 2 3

(c) A semistandard
tableau of shape 33.

Figure 5. Non-semistandard and semistandard tableaux.

4.3. Plactic Monoid. In this subsection, we describe an algebraic structure
called the plactic monoid, which can be used to study semistandard tableaux.
The content of this subsection is based on Fulton [Ful97, Chapter 2].

Recall that a word is a finite sequence of positive integers. Given a tableau
T , we define its column reading word wcol(T ) as the word obtained by
reading the entries of T with respect to the column order ⪯col. For example,
the column reading word of the semistandard tableau in Figure 5c is 212131.

Given two words a and b, we write ab for the concatenation of a and b.
The concatenation operation is associative and has the empty word ∅ as its
identity element. Hence, the set of words forms a monoid under concatena-
tion.

The Knuth or plactic equivalence ∼ is defined on the set of words by
the symmetric, reflexive, and transitive closure of the relations

axzyb ∼ azxyb if x ⩽ y < z, (7a)
ayxzb ∼ ayzxb if x < y ⩽ z. (7b)

For example, by taking a = 21, x = 1, y = 2, z = 3, and b = 1, by
Equation (7b), we obtain

212131 ∼ 212311. (8)
The plactic equivalence ∼ is compatible with the monoid structure of the

set of words because, if a ∼ a′ and b ∼ b′, then ab ∼ ab′ ∼ a′b′. This
implies that the product operation of plactic equivalence classes can be un-
ambiguously defined by

[a]∼ · [b]∼ = [ab]∼,

since we know that the choice of representatives for the plactic equivalence
classes does not affect the result of the product. Therefore, the set of plactic
equivalence classes of words forms a monoid under the product operation
induced by concatenation, which is called the plactic monoid.
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With this structure in place, Theorem 4.1 relates the plactic monoid to
one of the combinatorial objects we are interested in, semistandard tableaux.

Theorem 4.1 (inferred from [Ful97, p. 22]). The map that sends a semis-
tandard tableau T to the plactic equivalence class of its column reading word
wcol(T )

T 7→ [wcol(T )]∼
is a bijection between the set of semistandard tableaux and the plactic monoid.

Theorem 4.1 allows us to identify a semistandard tableau with the plactic
equivalence class of its column reading word, and vice-versa. Since there
is a well-defined product operation on the plactic monoid, we can define a
product operation on semistandard tableaux by identifying them with their
plactic equivalence classes, as done in Definition 4.2.

Definition 4.2 (inferred from [Ful97, p. 22]). Given two tableaux T and U ,
their product T · U is the unique tableau that is plactic equivalent to the
concatenation of the column reading words of T and U ; that is,

wcol(T · U) ∼ wcol(T )wcol(U).

The uniqueness of the product in Definition 4.2 follows from Theorem 4.1,
which states that there is a unique tableau in the plactic equivalence class of
a given word.

Proposition 4.3. Let T and U be semistandard tableaux. Then, wt(T ·U) =
wt(T ) + wt(U) and xT ·U = xT xU .

Proof. The result follows from the observation that two plactic equivalent
words have the same weight, since the defining plactic relations in Equa-
tions (7a) and (7b) simply permute the entries of the words. □

For example, if
T = 1 2

2 and U = 1 1
3 ,

whose column reading words are 212 and 311, respectively, then the product
of T and U must be the unique tableau whose column reading word is plactic
equivalent to 212113. Such tableau is

T · U = 1 1 1
2 2 3 ,

whose column reading word is 212131, which is plactic equivalent to 212311
by Equation (8). We can moreover check that xT ·U = x3

1x2
2x3 = xT xU .

4.4. Keys. In this subsection, we introduce keys, which are a particular
kind of tableaux that are used to encode compositions in the context of
tableaux combinatorics. The content of this subsection is based on Reiner
and Shimozono [RS95] and Lascoux and Schützenberger [LS90].
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A key is a semistandard tableau in which the set of entries in the (j +1)th

column are contained in the set of entries in the jth column, for all j ∈ Z>0.

1 2 2 6
2 5 6
4 6
5
6

Figure 6. The key of the composition 130124.

For example, the tableau in Figure 6 is a key, because the set of entries
in the fourth column, {6}, is contained in the set of entries in the third
column, {2, 6}, which is contained in the set of entries in the second column,
{2, 5, 6}, which finally is contained in the set of entries in the first column,
{1, 2, 4, 5, 6}.
Proposition 4.4 ([RS95, p. 111]). The map that sends a key K to the compo-
sition wt(K) is a bijection between the set of keys and the set of compositions.
Moreover, the inverse map sends a composition α to the key key(α), where
key(α) is the semistandard tableau of shape sort α whose first αj columns
contain the entry j, for all j ∈ Z>0.

For example, Figure 6 shows the key of the composition 130124, denoted
by key(130124). Note that the shape of key(130124) is sort 130124 = 43211.
Proposition 4.5 ([Mas09]). Given two compositions α and β, we have α ⩽ β
in the Bruhat order if and only if key(α) ⩽ key(β), by entrywise comparison
of tableaux.

Proposition 4.5 establishes a correspondence between the Bruhat order
on compositions and the entrywise order on keys. Since the Bruhat order
on compositions is relevant to the study of key and atom polynomials, the
entrywise order on keys gives a new perspective on the Bruhat order.

In addition to the aforementioned construction of keys, which serve as a
representation of compositions, there exists a way to associate (non-uniquely)
a key to each semistandard tableau. Each semistandard tableau T of shape
λ is associated to a key, called the right key of T , denoted K+(T ), of shape
λ.

To provide an intuitive understanding of the right key of a semistandard
tableau, we note that if a semistandard tableau T is already a key, then its
right key K+(T ) is equal to T itself. However, when T is not a key, the right
key K+(T ) is a tableau with entries that are slightly larger than those of T .

The right key of a semistandard tableau was introduced by Lascoux and
Schützenberger [LS90]. For an exposition of their definition, we refer the
interested reader to Reiner and Shimozono [RS95]. While this thesis does
not provide the original definition, we present an algorithm developed by
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Willis [Wil13] for constructing the right key of a semistandard tableau. This
algorithm, known as the scanning algorithm, is defined and illustrated in
Subsection 4.5.

Prior to presenting the algorithm, we elucidate the significance of the right
key of a semistandard tableau and its utility in the study of key and atom
polynomials.

Theorem 4.6 ([RS95], [LS90]). The atom polynomial Aα is

Aα =
∑

semistandard tableaux T
K+(T )=key(α)

xT ,

where the sum is over all semistandard tableaux T of shape key(α). The key
polynomial κα is given by

κα =
∑

semistandard tableaux T
K+(T )⩽key(α)

xT ,

where the sum is over all semistandard tableaux T of shape λ such that
K+(T ) ⩽ key(α), and ⩽ is the entrywise comparison of tableaux.

4.5. Scanning Algorithm. This subsection is based on Willis [Wil13] and
provides an algorithm for computing the right key of a semistandard tableau.

Before we present the algorithm, the definition of the earliest weakly in-
creasing subsequence of a word is needed. Given a word a1a2 . . . an, its
earliest weakly increasing subsequence is the subsequence ai1ai2 . . . aik

.
where i1 = 1 and the index ij+1 is the smallest index such that ij+1 > ij and
aij+1 ⩾ aij .

For example, if a = 221313243, then the earliest weakly increasing sub-
sequence of a is a1a2a4a6a8 = 22334. Moreover, the removal of the earliest
weakly increasing subsequence from a yields a3a5a7a9 = 1123.

Algorithm 1 presents the scanning algorithm, described in pseudocode,
which features the function RightKey that maps a semistandard tableau T
to its corresponding right key K+(T ).

Example 4.7. We walk through the scanning algorithm to compute

K+
(

1 1 1
2 2 3

)
= 1 1 1

3 3 3 = key(303).

The algorithm initializes with

T = 1 1 1
2 2 3 , k = 3, U0 = ∅.

The first iteration of the outer loop computes the first column of the output
and initializes with

j = 1, m1 = 2, T1 = 1 1 1
2 2 3 , w1,2 = 212131.
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Algorithm 1 Scanning Algorithm, adapted from Willis [Wil13]
1: function RightKey(T )
2: k ← number of columns of T
3: U0 ← empty tableau
4: for j ∈ {1, 2, . . . , k} do ▷ outer loop
5: mj ← number of elements in the jth column of T
6: Tj ← the subtableau of T consisting of columns j, j + 1, . . .
7: wj,mj ← the column reading word of Tj

8: for i ∈ {mj , mj − 1, . . . , 1 } do ▷ inner loop
9: sj,i ← the earliest weakly increasing subsequence of wj,i

10: wj,i−1 ← removal of sj,i from wj,i

11: end for
12: cj ← [last element of sj,1, . . . , last element of sj,mj ]
13: Uj ← the tableau obtained by adding cj as a new column to Uj−1
14: end for
15: return Uk

16: end function

The inner loop recursively computes
s1,2 = 223, w1,1 = 111,

s1,1 = 111, w1,0 = ∅.

Then, the algorithm computes c1 = (1, 3) by taking the last elements of s1,1
and s1,2, and computes

U1 = 1
3 .

The second iteration of the outer loop computes the second column of the
output and initializes with

j = 2, m2 = 2, T2 = 1 1
2 3 , w2,3 = 2131.

The inner loop recursively computes
s2,2 = 23, w2,1 = 11,

s2,1 = 11, w2,0 = ∅.

Then, the algorithm computes c2 = (1, 3) by taking the last elements of s2,1
and s2,2, and computes

U2 = 1
3 .

The third and final iteration of the outer loop computes the third column of
the output and initializes with

j = 3, m3 = 2, T3 = 1
3 , w3,1 = 31.
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The inner loop recursively computes
s3,2 = 3, w3,1 = 1,

s3,1 = 1, w3,0 = ∅.

Then, the algorithm computes c3 = (1, 3) by taking the last elements of s3,1
and s3,2, and computes

U3 = 1 1 1
3 3 3 ,

which the algorithm returns as the output, and hence the claim is proved.

5. Product of Key Polynomials through Keys

In this section, we unsuccessfully attempt to prove Conjecture 3.20 by
studying the product of key polynomials through keys. First, we describe
the strategy we attempted to use. Then, we present a counterexample that
shows the strategy is not viable.

5.1. Strategy. Given two compositions α and β, by Corollary 4.6, we have

κακβ =

 ∑
SST T

K+(T )⩽key(α)

xT


 ∑

SST U
K+(U)⩽key(β)

xU


=

∑
SST T,U

K+(T )⩽key(α)
K+(U)⩽key(β)

xT xU =
∑

SST T,U
K+(T )⩽key(α)
K+(U)⩽key(β)

xT ·U .

Therefore, if the multiset

Pα,β =
{

T · U :
SST T,U

K+(T )⩽key(α)
K+(U)⩽key(β)

}
can be partitioned into sets of the form

Aγ =
{

V : SST V
K+(V )=key(γ)

}
,

then we would be able to conclude that κακβ =
∑

γ cγ
α,βAγ , where cγ

α,β is the
number of times that Aγ appears in such a partition of P.

5.2. Counterexample. Consider α = 021 and β = 102, whose correspond-
ing keys are

key(021) = 2 2
3 and key(102) = 1 3

3 .

Table 1 shows all semistandard tableaux of shape 210, their right keys, and
the comparison of their right keys to key(021) and key(102).

From Table 1, we observe that there are five tableaux whose right keys are
less than or equal to key(021) and five tableaux whose right keys are less than
or equal to key(102). Therefore, the multiset P021,102 contains twenty-five
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Tableau T K+(T ) K+(T ) ⩽ key(021)? K+(T ) ⩽ key(102)?

1 1
2

1 1
2 ✓ ✓

1 1
3

1 1
3 ✓ ✓

1 2
2

1 2
2 ✓ ✓

1 2
3

2 2
3 ✓ ✗

1 3
2

1 3
3 ✗ ✓

1 3
3

1 3
3 ✗ ✓

2 2
3

2 2
3 ✓ ✗

2 3
3

2 3
3 ✗ ✗

Table 1. Semistandard tableaux of shape 210, their right keys,
and the comparison of their right keys to key(021) and key(102).

tableaux, obtained through all possible products T ·U of the tableaux T with
K+(T ) ⩽ key(021) and U with K+(U) ⩽ key(102). Refer to Definition 4.2 for
the product of two tableaux. Table 2 shows all such products.

T\U 1 1
2

1 1
3

1 2
2

1 3
2

1 3
3

1 1
2

1 1 1 1
2 2

1 1 1 1
2 3

1 1 1 2
2 2

1 1 1 3
2 2

1 1 1 3
2 3

1 1
3

1 1 1 1
2
3

1 1 1 1
3 3

1 1 1 2
2
3

1 1 1 3
2
3

1 1 1 3
3 3

1 2
2

1 1 1
2 2 2

1 1 1
2 2 3

1 1 2 2
2 2

1 1 2 3
2 2

1 1 3 3
2 2

1 2
3

1 1 1
2 2
3

1 1 1
2 3
3

1 1 2 2
2
3

1 1 2 3
2
3

1 1 3 3
2
3

2 2
3

1 1 2
2 2
3

1 1 3
2 2
3

1 2 2 2
2
3

1 2 2 3
2
3

1 2 3 3
2
3

Table 2. The twenty-five products between tableaux with right
keys at most key(021) and tableaux with right keys at most key(102).

From Table 2 or from Equation (4.3), we observe that one of the tableaux
in the multiset P021,102 is

1 1 1
2 2 3 = 1 2

2 · 1 1
3 .
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From Example 4.7, we know that the right key of this tableau is

K+
(

1 1 1
2 2 3

)
= 1 1 1

3 3 3 = key(303).

However, the set of all tableaux with key key(303) is

A303 =
{

1 1 1
2 2 3 ,

1 1 1
2 3 3 ,

1 1 1
3 3 3

}
,

which is not a subset of the multiset P021,102, since
1 1 1
2 3 3 /∈ P021,102.

Therefore, it is not possible to partition the multiset P021,102 into sets of
the form Aγ .

Consequently, the strategy outlined in Subsection 5.1 is not viable for
proving Conjecture 3.20, since the strategy fails for the compositions α = 021
and β = 102.

6. Crystal Combinatorics

In this section, we present crystal combinatorics, a combinatorial frame-
work for studying representations of Lie algebras, which allows us to derive
key and atom polynomials. However, we focus solely on crystals and estab-
lish the connection between crystals and key and atom polynomials directly,
without the need for Lie algebras.

The content of this section is based on the book by Bump and Schilling
[BS17, Chapters 2, 3, and 13]. We note that Bump and Schilling [BS17]
provide a comprehensive introduction to crystals, however, this thesis focuses
on the fundamental aspects of crystals relevant to the study of key and atom
polynomials, specifically, crystals of type An−1. For a detailed exposition of
crystals of other types, we refer the interested reader to Bump and Schilling
[BS17, Chapter 2].

6.1. Kashiwara Crystals. In this subsection, we define finite-type Kashi-
wara crystals of type An−1, the central algebraic structures in our study of
crystal combinatorics.

Let n ⩾ 2 be a positive integer. Let e1, . . . , en ∈ Zn be the standard basis
vectors, and let αi = ei − ei+1, for i ∈ {1, . . . , n− 1}.

Definition 6.1 ([BS17, Definition 2.13]). A finite-type Kashiwara crys-
tal of type An−1 is a set B with maps

ei, fi : B → B ∪ {0},
εi, φi : B → Z,

wt : B → Zn,

where i ∈ {1, . . . , n− 1} and 0 /∈ B is an auxiliary element, such that
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• for all u, v ∈ B and i ∈ {1, . . . , n− 1},
ei(u) = v if and only if fi(v) = u;

• for all u, v ∈ B and i ∈ {1, . . . , n− 1}, if ei(u) = v, then
wt(v) = wt(u) + αi, εi(v) = εi(u)− 1, φi(v) = φi(u) + 1;

• and for all v ∈ B and i ∈ {1, . . . , n− 1}, we have
φi(v) = wt(v) · αi + εi(v).

The maps ei and fi are called the crystal operators, the maps εi and φi

are called the string lengths, and the map wt is called the weight map.

We henceforth refer to finite-type Kashiwara crystals of type An−1 simply
as crystals of type An−1. This is not standard terminology, but we adopt it
for brevity.

Definition 6.2. Given two crystals B and C of type An−1, we say that B is
isomorphic to C if there exists a bijection β : B → C such that, for all v ∈ B
and i ∈ {1, . . . , n− 1},

β(eB
i (v)) = eC

i (β(v)), β(fB
i (v)) = fC

i (β(v)),
β(εB

i (v)) = εC
i (β(v)), β(φB

i (v)) = φC
i (β(v)),

β(wtB(v)) = wtC(β(v)).

Definition 6.3. Let B be a crystal of type An−1. Let eB
i , fB

i , wtB, εB
i , φB

i

be the crystal operators, weight function, and string lengths of B. Let C
be a subset of B. The subcrystal of B induced by C is the crystal with
underlying set C such that, for all v ∈ C and i ∈ {1, . . . , n− 1}, we have

eC
i (v) =

{
eB

i (v) if eB
i (v) ∈ C,

0 otherwise,
fC

i (v) =
{

fB
i (v) if fB

i (v) ∈ C,
0 otherwise,

εC
i (v) = εB

i (v), φC
i (v) = φB

i (v), wtC(v) = wtB(v).

The crystal graph of B is an edge-labeled directed graph, whose vertices
are the elements of B, and in which we draw an edge from u to v labeled i
whenever fi(u) = v. See Figure 7 for an example of a crystal graph.

If we ignore the labels and directions of the edges of the crystal graph of
B, we obtain a simple undirected graph. Each connected component of this
simple graph induces a subcrystal of B, which we call a full subcrystal of
B.

6.2. The Crystal B1 of Type An−1. In this subsection, we define the crys-
tal B1 of type An−1. This crystal will illustrate the definition in the previous
section, and all other crystals in this document will be, in some sense, derived
from B1.
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The crystal B1 of type An−1 [BS17, Example 2.19] is the crystal with
underlying set

B1 =
{

1 , 2 , 3 , . . . , n

}
,

such that, for all k ∈ {1, . . . , n} and all i ∈ {1, . . . , n− 1},

ei ( k ) =
{

k−1 if k = i + 1,

0 otherwise,
fi ( k ) =

{
k+1 if k = i,

0 otherwise,

εi ( k ) =
{

1 if k = i + 1,

0 otherwise,
φi ( k ) =

{
1 if k = i,

0 otherwise,
wt ( k ) = ek.

Figure 7 shows the crystal graph of B1 of type An−1.

1
1−−→ 2

2−−→ 3 · · · n−1
n−1−−→ n

Figure 7. The crystal graph of B1 of type An−1.

6.3. Tensor Product of Crystals. In this subsection, we define the tensor
product of crystals, which is a fundamental operation in crystal combina-
torics. The crystals that we explore in this thesis are derived from the tensor
product of B1 with itself.

Let B and C be crystals of type An−1. The tensor product B ⊗ C [BS17,
p. 18] is a crystal of type An−1 with the Cartesian product B × C as the
underlying set. The ordered pair (v, u) is denoted by v ⊗ u. The weight
function is given by

wt(v ⊗ u) = wt(v) + wt(u),
for all v ∈ B and u ∈ C. The crystal operators are given by

ei(v ⊗ u) =
{

ei(v)⊗ u if φi(u) < εi(v),
v ⊗ ei(u) if φi(u) ⩾ εi(v),

fi(v ⊗ u) =
{

fi(v)⊗ u if φi(u) ⩽ εi(v),
v ⊗ fi(u) if φi(u) > εi(v),

for all v ∈ B and u ∈ C, where we let v ⊗ 0 = 0⊗ u = 0. The string lengths
are given by

εi(v ⊗ u) = εi(u) + max{0, εi(v)− φi(u)}
φi(v ⊗ u) = φi(v) + max{0, φi(u)− εi(v)},

for all v ∈ B and u ∈ C. Bump and Schilling [BS17, Proposition 2.29] show
that B ⊗ C is indeed a crystal of type An−1.
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Example 6.4. Consider the tensor product B1⊗B1 of type A1. The underlying
set is

B1 ⊗ B1 =
{

1 ⊗ 1 , 1 ⊗ 2 , 2 ⊗ 1 , 2 ⊗ 2
}

,

the weight function is given by
wt ( 1 ⊗ 1 ) = wt ( 1 ) + wt ( 1 ) = (1, 0) + (1, 0) = (2, 0),
wt ( 1 ⊗ 2 ) = wt ( 1 ) + wt ( 2 ) = (1, 0) + (0, 1) = (1, 1),
wt ( 2 ⊗ 1 ) = wt ( 2 ) + wt ( 1 ) = (0, 1) + (1, 0) = (1, 1),
wt ( 2 ⊗ 2 ) = wt ( 2 ) + wt ( 2 ) = (0, 1) + (0, 1) = (0, 2),

the crystal operators are given by
e1 ( 1 ⊗ 1 ) = 0, f1 ( 1 ⊗ 1 ) = 1 ⊗ 2 ,

e1 ( 1 ⊗ 2 ) = 1 ⊗ 1 , f1 ( 1 ⊗ 2 ) = 2 ⊗ 2 ,

e1 ( 2 ⊗ 1 ) = 0, f1 ( 2 ⊗ 1 ) = 0,

e1 ( 2 ⊗ 2 ) = 1 ⊗ 2 , f1 ( 2 ⊗ 2 ) = 0,

and the string lengths are given by
ε1 ( 1 ⊗ 1 ) = 0, φ1 ( 1 ⊗ 1 ) = 2,

ε1 ( 1 ⊗ 2 ) = 1, φ1 ( 1 ⊗ 2 ) = 1,

ε1 ( 2 ⊗ 1 ) = 0, φ1 ( 2 ⊗ 1 ) = 0,

ε1 ( 2 ⊗ 2 ) = 2, φ1 ( 2 ⊗ 2 ) = 0.

The crystal graph is shown in Figure 8. We dive deeper into two computa-
tions of the crystal operators. For example, we compute f1 ( 1 ⊗ 1 ). Since
φ1( 1 ) = 1 > 0 = ε1( 1 ),

f1 ( 1 ⊗ 1 ) = 1 ⊗ f1( 1 ) = 1 ⊗ 2 .

Similarly, we compute f1 ( 2 ⊗ 1 ). Since φ1( 2 ) = 0 ⩽ 0 = ε1( 1 ),
f1 ( 2 ⊗ 1 ) = f1( 2 )⊗ 1 = 0⊗ 1 = 0.

1 ⊗ 1

1 ⊗ 2 2 ⊗ 1

2 ⊗ 2

1

1

Figure 8. The crystal graph of B1 ⊗ B1 of type A1.
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Proposition 6.5 ([BS17, Proposition 2.32]). Let B, C, and D be crystals of
type An−1. Then, (B ⊗ C)⊗D is isomorphic to B ⊗ (C ⊗ D).

Proposition 6.5 allows us to define, up to isomorphism, the crystal
B⊗k

1 = B1 ⊗ B1 ⊗ · · · ⊗ B1︸ ︷︷ ︸
k times

.

The crystal operators of B⊗k
1 can be computed using the signature rule [BS17,

Section 2.4]. The signature rule provides a systematic way to determine which
entry i is changed to i+1 when the crystal operator fi is applied, or whether
the operator cannot be applied resulting in 0. For a detailed explanation
of the signature rule, we refer the interested reader to Bump and Schilling
[BS17, Section 2.4].

For example, Figure 9 shows the crystal graph of B⊗3
1 of type A2. Note

that B⊗3
1 is partitioned into four full subcrystals, one with 10 elements, two

with 8 elements, and one with 1 element. Moreover, the two full subcrystals
with 8 elements are isomorphic to each other.

1 ⊗ 1 ⊗ 3

1 ⊗ 2 ⊗ 3 3 ⊗ 1 ⊗ 3

3 ⊗ 2 ⊗ 3

2 ⊗ 1 ⊗ 1

2 ⊗ 1 ⊗ 2 3 ⊗ 1 ⊗ 1

2 ⊗ 1 ⊗ 3

1 ⊗ 2 ⊗ 1

1 ⊗ 3 ⊗ 1 2 ⊗ 2 ⊗ 1

3 ⊗ 2 ⊗ 1

1 ⊗ 3 ⊗ 21 ⊗ 2 ⊗ 2

2 ⊗ 2 ⊗ 2 3 ⊗ 2 ⊗ 2

2 ⊗ 3 ⊗ 1

2 ⊗ 3 ⊗ 2

1 ⊗ 3 ⊗ 3 2 ⊗ 2 ⊗ 3

3 ⊗ 3 ⊗ 1

3 ⊗ 3 ⊗ 2

2 ⊗ 3 ⊗ 3

1 ⊗ 1 ⊗ 1

1 ⊗ 1 ⊗ 2

3 ⊗ 1 ⊗ 2

3 ⊗ 3 ⊗ 3

1

1

1 2

2

2 1

2

1

2 1

2

2

1

2 1 12

1 2

2

1

2

12 1

2

1

Figure 9. The crystal graph of B⊗3
1 of type A2.

6.4. Crystals of Tableaux. In this subsection, we define crystals indexed
by partitions, whose elements are semistandard tableaux. We have already
encountered one of these crystals, B1, which is indexed by the partition whose
only part is 1. In general, the crystal Bλ of type An−1 indexed by a partition
λ is defined as the set of semistandard tableaux of shape λ with entries in
{1, 2, . . . , n}. The crystal structure of Bλ is inherited from the crystal B⊗|λ|

1
of type An−1, where |λ| is the number of boxes in λ.
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The content of this subsection is based on Bump and Schilling [BS17,
Chapter 3]. We note that the construction of crystals of tableaux is based on
row reading words, while our construction will be based on column reading
words, for consistency with the rest of the thesis. Bump and Schilling [BS17,
Chapter 6] shows that the two constructions are isomorphic.

As a set, Bλ is the set of semistandard tableaux of shape λ with entries
in {1, 2, . . . , n}. Let T ∈ Bλ. Let a1a2 . . . ak be the column reading word of
T ∈ Bλ. We associate T to the element

a1 ⊗ a2 ⊗ · · · ⊗ ak ∈ B
⊗|λ|
1 .

Bump and Schilling [BS17, Chapter 3] claim that the image of this map
forms a full subcrystal of B⊗|λ|

1 . The crystal structure of Bλ is given by forcing
the map defined above to be a crystal isomorphism between Bλ and this full
subcrystal of B⊗|λ|

1 .

1 1
2

1 2
2

1 1
3

2 3
3

1 3
3

2 2
3

1 3
2

1 2
3

1 2

1 2

2

2

1

1

Figure 10. The crystal graph of B21 of type A2.

Example 6.6. We compute the crystal B21 of type A2. As a set, B21 is the
set of semistandard tableaux of shape 21, hence its elements are

1 1
2 ,

1 1
3 ,

1 2
2 ,

1 2
3 ,

1 3
2 ,

1 3
3 ,

2 2
3 ,

2 3
3 .

Under the map from B21 to B⊗3
1 , these elements are mapped, respectively, to

2 ⊗ 1 ⊗ 1 , 3 ⊗ 1 ⊗ 1 , 2 ⊗ 1 ⊗ 2 , 3 ⊗ 1 ⊗ 2 ,

2 ⊗ 1 ⊗ 3 , 3 ⊗ 1 ⊗ 3 , 3 ⊗ 2 ⊗ 2 , 3 ⊗ 2 ⊗ 3 .

From Figure 9, we observe that these eight elements form a full subcrystal
of B⊗3

1 . The crystal structure of B21 is given by forcing the map above to be
a crystal isomorphism between B21 and this subcrystal. Figure 10 shows the
crystal graph of B21 of type A2.
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6.5. Demazure Crystals. Given a crystal B of type An−1, define the oper-
ator Di on a subset X ⊆ B by

DiX = {x ∈ B : x = fk
i (y) for some y ∈ X and k ∈ Z⩾0},

where fk
i denotes the k-fold application of the operator fi.

Let λ be a partition with at most n parts. Let w ∈ Sn be a permutation,
and let a1a2 . . . aℓ be a reduced word for w. The Demazure crystal Bλ(w)
of type An−1 is the subcrystal of Bλ of type An−1 induced by

Da1Da2 · · · Daℓ
{Tλ},

where Tλ is the tableau of shape λ such that the entries in the ith row are i.

Theorem 6.7 ([BS17, inferred from Theorem 13.5]). The definition of Bλ(w)
is independent of the choice of reduced word for w.

1 1
2

1 2
2

1 1
3

1 3
3

1 3
2

1 2

2

2

(a) The crystal graph of B21(σ2σ1).

1 1
2

1 2
2

1 1
3

2 2
3

1 2
3

1 2

1

1

(b) The crystal graph of B21(σ2σ1).

Figure 11. Crystal graphs of two Demazure subcrystals of B21 of
type A2.

Example 6.8. We compute the Demazure crystal B21(σ2σ1) of type A2. Refer
to Figure 10 for the crystal graph of B21 of type A2, which we know that
B21(σ2σ1) is a subcrystal of. Note that σ2σ1 has reduced word 21. Therefore,
B21(σ2σ1) is the subcrystal of B21 induced by

D2D1
{

1 1
2

}
= D2

{
1 1
2 ,

1 2
2

}
=
{

1 1
2 ,

1 1
3 ,

1 2
2 ,

1 3
2 ,

1 3
3

}
.

In simple terms, starting with the tableau 1 1
2 , we apply the operator f1

any number of times (including zero), and then apply the operator f2 any
number of times (including zero). Refer to Figure 11a for the crystal graph
of B21(σ2σ1).

Example 6.9. We compute the Demazure crystal B21(σ1σ2) of type A2. Note
that σ1σ2 has reduced word 12. Therefore, B21(σ1σ2) is the subcrystal of B21
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induced by

D1D2
{

1 1
2

}
= D1

{
1 1
2 ,

1 1
3

}
=
{

1 1
2 ,

1 2
2 ,

1 1
3 ,

1 2
3 ,

1 3
3

}
.

In simple terms, starting with the tableau 1 1
2 , we apply the operator f2

any number of times (including zero), and then apply the operator f1 any
number of times (including zero). Refer to Figure 11b for the crystal graph
of B21(σ1σ2).

Let λ be a partition with at most n parts. Let w ∈ Sn be a permutation.
The Demazure crystal atom Aλ(w) of type An−1 [Arm23, Definition 3.0.1]
is the subcrystal of Bλ of type An−1 induced by

Bλ(w) \
⋃

v<w

Bλ(v),

where < denotes the Bruhat order on Sn.
For example, Figure 12 shows the crystal graph of A21(σ2σ1) of type A2.

1 3
3

1 3
2

2

Figure 12. The crystal graph of A21(σ2σ1).

Proposition 6.10 ([Arm23, Theorem 3.0.2]). Let λ be a partition with at
most n parts, and let w ∈ Sn be a permutation. Then,

Bλ(w) =
⊔

w′∈Sλ
n

w′⩽w

Aλ(v),

where Sλ
n is the set of permutations w that are the shortest sorting permuta-

tions of λw.
6.6. Demazure Characters and Demazure Atoms. Given a crystal B
of type An−1, we define its character as

χ(B) =
∑
v∈B

xwt(v) ∈ Z[x1, x2, . . . , xn].

Finally, we return to the key and atom polynomials. Theorem 6.11 states
that the character of a Demazure crystal is a key polynomial, and the char-
acter of a Demazure atom is an atom polynomial.
Theorem 6.11 ([BS17, Theorem 13.7], [Arm23, Theorem 3.0.1]). Let λ be
a partition with at most n parts, and let w ∈ Sn be a permutation. The
character of the Demazure crystal Bλ(w) is the key polynomial κλw; that is,

κλw = χ(Bλ(w)).
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The character of the Demazure atom Aλ(w) is the atom polynomial Aλw; that
is,

Aλw = χ(Aλ(w)).

Since we are interested in the product of two key polynomials, we are
interested in the product of characters of Demazure crystals. Proposition 6.12
allows us to write a product of characters of crystals as the character of the
tensor product of those crystals.

Proposition 6.12 ([BS17, Exercise 2.11]). Let B, C be crystals of type An−1.
Then

χ(B ⊗ C) = χ(B)χ(C).

Proof. Recall that, as a set, B ⊗ C = B × C. Moreover, the weight function
of B ⊗ C is given by wt(v ⊗ u) = wt(v) + wt(u). Hence,

χ(B ⊗ C) =
∑

v⊗u∈B⊗C
xwt(v⊗u)

=
∑

(v,u)∈B×C
xwt(v)+wt(u) =

(∑
v∈B

xwt(v)
)(∑

u∈C
xwt(u)

)
= χ(B)χ(C).□

7. Tensor Product of Demazure Crystals

In this section, we provide another unsuccessful attempt to prove Conjec-
ture 3.20, by studying the tensor product of Demazure crystals. We describe
the strategy we attempted to use, present an example where the strategy
works, and finally provide a counterexample where the strategy is not viable.

7.1. Strategy. Recall that Conjecture 3.20 states that the product of two
Demazure key polynomials is a nonnegative linear combination of Demazure
atom polynomials. Note that the product κλ1w1κλ2w2 is the character of the
tensor product of Demazure crystals Bλ1(w1)⊗ Bλ2(w2).

Therefore, if we are able to decompose a tensor product of the form
Bλ1(w1)⊗Bλ2(w2) into pieces that are isomorphic to Demazure atom crystals
then we would conclude that

κλ1w1κλ2w2 =
∑
µ,v

cµv
λ1w1,λ2w2

Aµv

where the coefficient cµv
λ1w1,λ2w2

is the number of pieces isomorphic to the
Demazure atom crystal Aµ(v) in the such a decomposition of the tensor
product of Demazure crystals Bλ1(w1)⊗ Bλ2(w2).

7.2. Example. Consider the tensor product of two Demazure crystals B1(σ1)
and B11(σ2), of type A2. Figure 13 shows the crystal graphs of the crystal
B1, its Demazure crystal B1(σ1), the crystal B11, and its Demazure crystal
B11(σ2). Figure 14 shows the tensor product B1(σ1)⊗ B11(σ2).
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1

2

3

1

2

(a) B1.

1

2

3

1

(b) B1(σ1).

1
3

2
3

1
2

1

2

(c) B11.

1
3

2
3

1
2

2

(d) B11(σ2).

Figure 13. Crystal graphs of two crystals of tableaux and De-
mazure subcrystals.

2 ⊗
1
2

2 ⊗
1
3

1 ⊗
1
2

1 ⊗
1
3

2

1 2

Figure 14. The tensor product B1(σ1)⊗ B11(σ2).

We can decompose the tensor product B1 ⊗ B11 into four pieces, each
containing a single element. Ordering the pieces as they appear from top to
bottom, then left to right, in Figure 14, these pieces are isomorphic to the De-
mazure atom crystals A21(id), A21(σ1), A21(σ2), and A111(id), respectively.
The four listed Demazure atom crystals are shown in Figure 15. To check
that these pairs of crystals are isomorphic, since each crystal has only one
element, it suffices to check that the weight of the only element in a piece is
the same as the weight of the only element in the respective Demazure atom
crystal.

1
2
3

(a) A111(id).

1 1
2

1 1
3

2

(b) A21(σ2).

1 1
2

1 2
2

1

(c) A21(σ1).

1 1
2

(d) A21(id).

Figure 15. Demazure atom crystals of type A2. Gray nodes are
not elements of the subcrystals, but are included for clarity.

As a corollary of this decomposition, we obtain
κ1σ1κ11σ2 = A111id + A21σ2 + A21σ1 + A21id,
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or equivalently, in terms of compositions,
κ01κ101 = A111 + A201 + A12 + A21.

7.3. Counterexample. Consider the product of the key polynomials κ21σ2σ1
and κ21σ1σ2 , of type A2. The Demazure crystals B21(σ2σ1) and B21(σ1σ2) are
shown in Figure 11. Their tensor product B21(σ2σ1)⊗B21(σ1σ2) is shown in
Figure 16.

1 3
3 ⊗

1 1
2

1 3
3 ⊗

1 2
2

1 1
2 ⊗

1 2
3

1 1
2 ⊗

2 2
3

1 1
3 ⊗

1 2
3

1 1
3 ⊗

1 2
2

1 3
2 ⊗

1 2
2

1 2
2 ⊗

1 1
3

1 3
2 ⊗

1 1
3

1 2
2 ⊗

1 2
3

1 1
2 ⊗

1 1
2

1 1
2 ⊗

1 2
2

1 1
2 ⊗

1 1
3

1 2
2 ⊗

2 2
3

1 2
2 ⊗

1 2
2

1 1
3 ⊗

1 1
3

1 3
3 ⊗

1 1
3

1 3
2 ⊗

1 2
3

1 3
2 ⊗

2 2
3

1 3
3 ⊗

2 2
3

1 1
3 ⊗

2 2
3

1 3
3 ⊗

1 2
3

1 2
2 ⊗

1 1
2

1 1
3 ⊗

1 1
2

1 3
2 ⊗

1 1
2

1

1 2

2 1

1 2

1

1 2 1

2

1

2

1 2

2

1 121

1

12 1

Figure 16. The tensor product B21(σ2σ1)⊗ B21(σ1σ2).

Using SageMath [Sage; SC], we compute the product of the key polynomials
κ21σ2σ1 and κ21σ1σ2 to be

2A321 + 2A321σ1 + 2A321σ2 + A321σ1σ2 + A321σ2σ1 + A321σ1σ2σ1

+A411 + A411σ1 + A222 + A33 + A33σ2 + A42 + A42σ1 + A42σ2 .

Therefore, if there is a decomposition of the tensor product of Demazure
crystals B21(σ2σ1)⊗ B21(σ1σ2) into pieces that are isomorphic to Demazure
crystal atoms, then the decomposition must consist of pieces isomorphic to

2A321(id), 2A321(σ1), 2A321(σ2),A321(σ1σ2),A321(σ2σ1),A321(σ1σ2σ1),
A411(id),A411(σ1),A222(id),A33(id),A33(σ2),A42(id),A42(σ1),A42(σ2),

where the number in front of each atom indicates the number of times it
appears in the decomposition.

To see that such a decomposition is impossible, let’s pay attention to the
three vertices with weight 222, namely

1 3
3 ⊗ 1 2

2 ,
1 1
3 ⊗ 2 2

3 ,
1 3
2 ⊗ 1 2

3 .
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These vertices must appear, in some order, in the parts isomorphic to the
Demazure crystal atoms A321(σ1σ2), A321(σ2σ1), and A222(id), since these
are the three Demazure crystal atoms in the list above that contain a vertex
with weight 222. Refer to Figure 17 for the crystal graph of these three
Demazure crystal atoms.

1 1 2
2 2
3

1 1 3
2 2
3

1 1 3
2 3
3

1 1 1
2 2
3

1 1 1
2 3
3

2

1 2

2

(a) A21(σ2σ1).

1 1 2
2 2
3

1 1 1
2 2
3

1 1 1
2 3
3

1 1 2
2 3
3

1 2 2
2 3
3

1 2

1

1

(b) A21(σ1σ2).

1 1
2 2
3 3

(c) A222(id).

Figure 17. Demazure crystal atoms containing vertices with
weight 222. Gray elements are not part of crystal.

On one hand, in two of these three Demazure crystal atoms, the vertex
with weight 222 is connected to a vertex of smaller weight. On the other
hand, in the tensor product B21(σ2σ1)⊗B21(σ1σ2), two of the three vertices
with weight 222 are not connected to any vertex of smaller weight. Therefore,
the tensor product B21(σ2σ1)⊗B21(σ1σ2) cannot be decomposed into pieces
that are isomorphic to Demazure crystal atoms.

References

[Arm23] Sam Armon. Extremal Subsets and Atom-Positivity. 2023.
arXiv: 2310.14584 [math]. preprint.

[BS17] Daniel Bump and Anne Schilling. Crystal Bases: Representa-
tions and Combinatorics. New Jersey: World Scientific, 2017.
279 pp.

[Ful97] William Fulton. Young Tableaux: With Applications to Repre-
sentation Theory and Geometry. London Mathematical Society
Student Texts 35. Cambridge, [England] ; New York: Cambridge
University Press, 1997. 260 pp.

[HLMW11] J. Haglund, K. Luoto, S. Mason, and S. van Willigenburg. “Re-
finements of the Littlewood-Richardson Rule”. In: Trans. Amer.
Math. Soc. 363.3 (2011), pp. 1665–1686.

https://arxiv.org/abs/2310.14584


REFERENCES 35

[LS90] Alain Lascoux and Marcel-Paul Schützenberger. “Keys & Stan-
dard Bases”. In: Invariant Theory and Tableaux: Proceedings of
the Workshop on Invariant Theory and Tableaux, Held at the
IMA on March 21 - 25, 1988. The IMA Volumes in Mathemat-
ics and Its Applications 19. Minneapolis, MN: Springer, 1990.

[Mac91] I. G. Macdonald. Notes on Schubert Polynomials, Laboratoire de
Combinatoire et d’informatique Mathématique (LACIM). Uni-
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